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A preview of the mathematical problem
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A preview of the mathematical problem

Reconstructed trajectories?
ρ̂t1

ρ̂t2
ρ̂t3

Goal: reconstruct the law of the trajectories Xt

from samples of the temporal marginals.

State space X
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1 - Biological Context

2 - Algorithms and results

dXt = v(t,Xt)dt+ σdBt3 - Theoretical analysis
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Single-cell RNA sequencing


Number RNA gene 1
Number RNA gene 2
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Number RNA gene N


Gene expression profile

Cell
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Single-cell RNA sequencing


Number RNA gene 1
Number RNA gene 2

...
Number RNA gene N


Gene expression profile

Cell

Population of cells
Gene 1

Gene 2

Gene expression space X

State of one cell
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Investing cell differentiation

Schiebinger et al. (2019). Reconstruction of developmental landscapes by optimal-transport analysis
of single-cell gene expression sheds light on cellular reprogramming.

1/2 d. 1 d. 3/2 d. Time

Gene expression space X

MeasurementStem cells

Single cell seq.
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Investing cell differentiation

Schiebinger et al. (2019). Reconstruction of developmental landscapes by optimal-transport analysis
of single-cell gene expression sheds light on cellular reprogramming.

1/2 d. 1 d. 3/2 d. Time

Gene expression space X

MeasurementStem cells

Single cell seq.

(Biological) goal: reconstruct fate of cells, unravel
the regulatory network.

Schiebinger et al.
• 39 time points.
• Total 250, 000 cells measured.
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Dataset

Displayed with Force
Layout Embedding
(FLE), a dimensionality
reduction technique

https://broadinstitute.github.io/wot/ 6/21



Disclaimer: in this presentation, we ignore cell division.
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1 - Biological Context

2 - Algorithms and results

dXt = v(t,Xt)dt+ σdBt3 - Theoretical analysis
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(Entropic) optimal transport

α =
∑n

i=1 aiδxi

β =
∑m

i=1 bjδyj

∑
i ai =

∑
j bj = 1

Probability distributions:

Peyré and Cuturi. (2019). Computational Optimal Transport. 9/21
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(Entropic) optimal transport

α =
∑n

i=1 aiδxi

β =
∑m

i=1 bjδyj

∑
i ai =

∑
j bj = 1

Probability distributions:

Find π ≥ 0 such that{∑
j πij = ai∑
i πij = bj

and which minimizes∑
ij

πij |xi − yj |2 + ε
∑
ij

πij logπij

π law of (X,Y ) with X ∼ α and Y ∼ β:

P(X = xi, Y = yj) = πij

Peyré and Cuturi. (2019). Computational Optimal Transport. 9/21
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A description of (a simplified) Waddington OT
Input: ρt1 , ρt2 , . . . ρtT probability measures
Ouptut: R law of reconstructed trajectories.

ρt1

ρt2

ρt3
ρt4
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A description of (a simplified) Waddington OT
Input: ρt1 , ρt2 , . . . ρtT probability measures
Ouptut: R law of reconstructed trajectories.

ρt1

ρt2

ρt3
ρt4

How to sample from R?
1. Compute Optimal Transport couplings.

π12

π23

π34

2. Sample Xt1 ∼ ρt1 .

Xt1

3. Sample Xt2 ∼ π12(·|x = Xt1).

Xt2

Xt3

Xt4

4. Iterate: sample Xti+1
∼ πi,i+1(·|x = Xti).
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Example on the dataset of Schiebinger et al.

Looking at the ancestors
of a particular set of cells
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“Sparse data” framework

X

Time
ti

ρ̂ti 6= ρti
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“Sparse data” framework
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Not wanted

Few samples per
time point, need to
share information
across time points.
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Idea: data fitting + regularization

Cross entropy H(ρ̂ti |Rti) between
data ρ̂ti and reconstructed
marginal Rti

Sum of optimal transport
distances

Schmitzer, Schäfers, Wirth. (2019). Dynamic Cell Imaging in PET With Optimal Transport Regularization.



Global Waddington OT

Unknowns: marginals Rti ,

P(X )

ρ̂ti

13/21Lavenant, Zhang, Kim, Schiebinger. (2021). Towards a mathematical theory of trajectory inference.
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Global Waddington OT

Unknowns: marginals Rti ,

P(X )

Ground truth Pt

ρ̂ti

Rti Rti+1

Penalization
OTε(Rti ,Rti+1

)

Penalization Fit(Rti , ρ̂ti) = H(ρ̂ti |Rti)

Reg((Rti)i) ∼
T−1∑
i=1

OTε(Rti ,Rti+1)
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Optimal transport cost

Lavenant, Zhang, Kim, Schiebinger. (2021). Towards a mathematical theory of trajectory inference.



Numerical results (synthetic)
Equilibria

samples

Ground truth
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Numerical results (synthetic)
Equilibria

Solving the
inference
problem

samples

Ground truth
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1 - Biological Context

2 - Algorithms and results

dXt = v(t,Xt)dt+ σdBt3 - Theoretical analysis
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Questions about (global) Waddington OT

In short: temporal couplings are given by optimal transport.
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Short answer:
• Works if data is generated by a potential Stochastic
Differential Equation.

• Choose ε = σ2∆t with σ noise level in the SDE.



Potential SDEs

17/21

The process Xt is a Stochastic Differential Equation
(SDE):

dXt = v(t,Xt)dt+ σdBt.



Potential SDEs

v(t, x) = −∇Ψ(t, x) for potential Ψ = Ψ(t, x)
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Intuitive explanation: removing identifiability issue

Impossible to distinguish
periodic motion from cells
at rest.

Xρt
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Intuitive explanation: removing identifiability issue

Impossible to distinguish
periodic motion from cells
at rest.

Assuming
v(t, x) = −∇Ψ(t, x)

prevents the velocity field to create periodic motion

Xρt

Weinreb et al. (2018). Fundamental limits on dynamic inference from single-cell snapshots. 18/21



Rigorous result: a variational characterization

19/21

Ω = C([0, 1],X ), unknown R ∈ P(Ω).

Reg((Rti)i) ∼
T−1∑
i=1

OTσ2∆t(Rti ,Rti+1
) ∼ H(R|Wσ)

where Wσ law of Brownian motion with diffusivity σ.
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Ω = C([0, 1],X ), unknown R ∈ P(Ω).

Reg((Rti)i) ∼
T−1∑
i=1

OTσ2∆t(Rti ,Rti+1
) ∼ H(R|Wσ)

where Wσ law of Brownian motion with diffusivity σ.

dXt = −∇Ψ(t,Xt)dt+ σdBt.

Then
H(P|Wσ) ≤ H(R|Wσ).

for any R ∈ P(Ω) such that LawP(Xt) = LawR(Xt) for
any t ∈ [0, 1].



Rigorous result: convergence of the reconstructed laws

Take P ∈ P(C([0, 1],X )) the law of the SDE

dXt = −∇Ψ(t,Xt)dt+ σdBt.

Take (ρ̂ti)1≤i≤T samples from Xti . Call RT,h,λ minimizer of

R 7→ Data fitting[(Rti)i, (Φhρ̂ti)ti ] + λReg(R)

ρ̂ti

Rti

Φ heat flow

Ground truth P 20/21



Rigorous result: convergence of the reconstructed laws

Take P ∈ P(C([0, 1],X )) the law of the SDE

dXt = −∇Ψ(t,Xt)dt+ σdBt.

Take (ρ̂ti)1≤i≤T samples from Xti . Call RT,h,λ minimizer of

R 7→ Data fitting[(Rti)i, (Φhρ̂ti)ti ] + λReg(R)

Then

lim
h,λ→0

(
lim

T→+∞

(
RT,h,λ

))
= P

for the topology of narrow
convergence.

ρ̂ti

Rti

Ground truth P 20/21



Conclusion

• Mathematical framework for trajectory inference.
• Guarantees of reconstruction.
• Convex method, but with parameters tuning.

• Extensive numerical experiments.
• How we handle cell division
• Recent work on mesh free numerical optimization

What I have not described

21/21Zhang, Chizat, Heitz and Schiebinger. (2022). Trajectory Inference via Mean-field Langevin in Path Space.



Conclusion

• Mathematical framework for trajectory inference.
• Guarantees of reconstruction.
• Convex method, but with parameters tuning.

Thank you for your attention

• Extensive numerical experiments.
• How we handle cell division
• Recent work on mesh free numerical optimization

What I have not described

21/21Zhang, Chizat, Heitz and Schiebinger. (2022). Trajectory Inference via Mean-field Langevin in Path Space.
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What about branching?

X

Branching

Death

In reality cells divide
and die.

Baradat and L. (2021). Regularized optimal transport as entropy minimization with respect to
branching Brownian motion.

In progress (with Aymeric Baradat): studying entropy
minimization with respect to the law of the Branching
Brownian Motion.
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Handling growth in our paper: splitting
Before: unknowns marginals Rti ,

Reg((Rti)i) ∼
T−1∑
i=1

OTε(Rti ,Rti+1).

mass

time

Rt1

Rt2

Rt3

Rt2

Rt3

To handle branching: alternance of transport and
growth phases.

Reg((Rti)i, (Rti)i) =
∑
i

OTε(Rti ,Rti+1)

+ G(Rti ,Rti)

G(Rti ,Rti) measures discrepancy (e.g.
KL) between Rti(x) exp(∆t g(x)) and
Rti(x) with g : X → R a priori growth
rate.


