Solving the trajectory inference problem with the help of optimal transport

Hugo Lavenant

Bocconi University

Workshop "Optimal Transport, Mean-Field Models and Machine Learning" Munich, April 26, 2023

Joint work with:

Stephen Zhang

Young-Heon Kim

Geoff Schiebinger

Stochastic process X_t

Samples from law of X_{t_1}

Stochastic process X_t

Samples from law of X_{t_2} (independent from the previous samples)

Stochastic process X_t

Samples from law of X_{t_3} (independent from the previous samples)

Goal: reconstruct the law of the trajectories X_t from samples of the temporal marginals.

1 - Biological Context

2 - Algorithms and results

3 - Theoretical analysis

$$\mathrm{d}X_t = \mathbf{v}(t, X_t)\mathrm{d}t + \sigma\mathrm{d}B_t$$

2 - Algorithms and results

3 - Theoretical analysis

$$\mathrm{d}X_t = \mathbf{v}(t, X_t)\mathrm{d}t + \sigma\mathrm{d}B_t$$

Single-cell RNA sequencing

Gene expression profile

´Number RNA gene 1` Number RNA gene 2

Number RNA gene N

Single-cell RNA sequencing

Investing cell differentiation

Investing cell differentiation

(Biological) goal: reconstruct fate of cells, unravel the regulatory network.

Schiebinger et al. (2019). Reconstruction of developmental landscapes by optimal-transport analysis of single-cell gene expression sheds light on cellular reprogramming.

Dataset

Displayed with **Force Layout Embedding** (FLE), a dimensionality reduction technique

https://broadinstitute.github.io/wot/

Disclaimer: in this presentation, we ignore cell division.

1 - Biological Context

2 - Algorithms and results

3 - Theoretical analysis

$$\mathrm{d}X_t = \mathbf{v}(t, X_t)\mathrm{d}t + \sigma\mathrm{d}B_t$$

Probability distributions:

$$\sum_{i} \mathbf{a_i} = \sum_{j} \mathbf{b_j} = 1$$

Peyré and Cuturi. (2019). Computational Optimal Transport.

Probability distributions:

$$\sum_{i} \mathbf{a_i} = \sum_{j} \mathbf{b_j} = 1$$

Peyré and Cuturi. (2019). Computational Optimal Transport.

$$\begin{cases} \sum_{j} \pi_{ij} = \mathbf{a}_{i} \\ \sum_{i} \pi_{ij} = \mathbf{b}_{j} \end{cases}$$

and which minimizes

$$\sum_{ij} \pi_{ij} |x_i - y_j|^2$$

Probability distributions:

$$\sum_{i} \mathbf{a_i} = \sum_{j} \mathbf{b_j} = 1$$

Peyré and Cuturi. (2019). Computational Optimal Transport.

$$\begin{cases} \sum_{j} \pi_{ij} = \mathbf{a}_{i} \\ \sum_{i} \pi_{ij} = \mathbf{b}_{j} \end{cases}$$

and which minimizes

$$\sum_{ij} \pi_{ij} |\mathbf{x}_i - \mathbf{y}_j|^2 + \varepsilon \sum_{ij} \pi_{ij} \log \pi_{ij}$$

Probability distributions:

$$\sum_{i} \mathbf{a_i} = \sum_{j} \mathbf{b_j} = 1$$

 π law of (X, Y) with $X \sim \alpha$ and $Y \sim \beta$:

$$\mathbb{P}(X = \mathbf{x}_i, Y = \mathbf{y}_j) = \pi_{ij}$$

Peyré and Cuturi. (2019). Computational Optimal Transport.

Find
$$\pi \ge 0$$
 such that

$$\begin{cases} \sum_{j} \pi_{ij} = \mathbf{a}_{i} \\ \sum_{i} \pi_{ij} = \mathbf{b}_{j} \end{cases}$$

and which minimizes

$$\sum_{ij} \pi_{ij} |\mathbf{x_i} - \mathbf{y_j}|^2 + \varepsilon \sum_{ij} \pi_{ij} \log \pi_{ij}$$

Input: $\rho_{t_1}, \rho_{t_2}, \dots \rho_{t_T}$ probability measures **Ouptut**: **R** law of reconstructed trajectories.

Example on the dataset of Schiebinger et al.

"Sparse data" framework

"Sparse data" framework

Few samples per time point, need to share information across time points.

"Sparse data" framework

Schmitzer, Schäfers, Wirth. (2019). Dynamic Cell Imaging in PET With Optimal Transport Regularization.

Global Waddington OT

Unknowns: marginals \mathbf{R}_{t_i} ,

Global Waddington OT

Unknowns: marginals \mathbf{R}_{t_i} ,

Global Waddington OT

Numerical results (synthetic)

Numerical results (synthetic)

1 - Biological Context

2 - Algorithms and results

3 - Theoretical analysis

$$\mathrm{d}X_t = \mathbf{v}(t, X_t)\mathrm{d}t + \sigma\mathrm{d}B_t$$

In short: temporal couplings are given by optimal transport.

In short: temporal couplings are given by optimal transport.

1. How to choose ε entropic parameter?

In short: temporal couplings are given by optimal transport.

- 1. How to choose ε entropic parameter?
- 2. How can one justify it?

In short: temporal couplings are given by optimal transport.

- 1. How to choose ε entropic parameter?
- 2. How can one justify it?
- 3. Does it converge with more and more marginals?

In short: temporal couplings are given by optimal transport.

- 1. How to choose ε entropic parameter?
- 2. How can one justify it?
- 3. Does it converge with more and more marginals?

Short answer:

- Works if data is generated by a **potential** Stochastic Differential Equation.
- Choose $\varepsilon = \sigma^2 \Delta t$ with σ noise level in the SDE.

Potential SDEs

The process X_t is a **Stochastic Differential Equation** (SDE):

$$\mathrm{d}X_t = \mathbf{v}(t, X_t)\mathrm{d}t + \sigma\mathrm{d}B_t.$$

Potential SDEs

The process X_t is a **Stochastic Differential Equation** (SDE):

$$\mathrm{d}X_t = \mathbf{v}(t, X_t)\mathrm{d}t + \sigma\mathrm{d}B_t.$$

$$\mathbf{v}(t,x) = -\nabla \Psi(t,x)$$
 for potential $\Psi = \Psi(t,x)$

Intuitive explanation: removing identifiability issue

Impossible to distinguish periodic motion from cells at rest.

Intuitive explanation: removing identifiability issue

Impossible to distinguish periodic motion from cells at rest.

Assuming

$$\mathbf{v}(t,x) = -\nabla \Psi(t,x)$$

prevents the velocity field to create periodic motion

Weinreb et al. (2018). Fundamental limits on dynamic inference from single-cell snapshots.

Rigorous result: a variational characterization

 $\Omega = C([0,1], \mathcal{X})$, unknown $\mathbf{R} \in \mathcal{P}(\Omega)$.

$$\operatorname{Reg}((\mathbf{R}_{t_i})_i) \sim \sum_{i=1}^{T-1} \operatorname{OT}_{\sigma^2 \Delta t}(\mathbf{R}_{t_i}, \mathbf{R}_{t_{i+1}}) \sim H(\mathbf{R} | \mathbf{W}^{\sigma})$$

where \mathbf{W}^{σ} law of Brownian motion with diffusivity σ .

Rigorous result: a variational characterization

 $\Omega = C([0,1], \mathcal{X})$, unknown $\mathbf{R} \in \mathcal{P}(\Omega)$.

$$\operatorname{Reg}((\mathbf{R}_{t_i})_i) \sim \sum_{i=1}^{T-1} \operatorname{OT}_{\sigma^2 \Delta t}(\mathbf{R}_{t_i}, \mathbf{R}_{t_{i+1}}) \sim H(\mathbf{R} | \mathbf{W}^{\sigma})$$

where \mathbf{W}^{σ} law of Brownian motion with diffusivity σ .

Take $\mathbf{P} \in \mathcal{P}(\Omega)$ law of the SDE $\mathrm{d}X_t = -\nabla \Psi(t, X_t) \mathrm{d}t + \sigma \mathrm{d}B_t.$

Then

$$H(\mathbf{P}|\mathbf{W}^{\sigma}) \le H(\mathbf{R}|\mathbf{W}^{\sigma}).$$

for any $\mathbf{R} \in \mathcal{P}(\Omega)$ such that $\operatorname{Law}_{\mathbf{P}}(X_t) = \operatorname{Law}_{\mathbf{R}}(X_t)$ for any $t \in [0, 1]$.

Rigorous result: convergence of the reconstructed laws

Rigorous result: convergence of the reconstructed laws

Take
$$\mathbf{P} \in \mathcal{P}(C([0,1],\mathcal{X}))$$
 the law of the SDE

$$\mathrm{d}X_t = -\nabla\Psi(t, X_t)\mathrm{d}t + \sigma\mathrm{d}B_t.$$

Take $(\hat{\rho}_{t_i})_{1 \leq i \leq T}$ samples from X_{t_i} . Call $\mathbf{R}^{T,h,\lambda}$ minimizer of

 $\mathbf{R} \mapsto \mathsf{Data\ fitting}[(\mathbf{R}_{t_i})_i, (\Phi_h \hat{\rho}_{t_i})_{t_i}] + \lambda \operatorname{Reg}(\mathbf{R})$

Ground truth P

Then

$$\lim_{h,\lambda\to 0} \left(\lim_{T\to +\infty} \left(\mathbf{R}^{T,h,\lambda} \right) \right) = \mathbf{P}$$

for the topology of narrow convergence.

Conclusion

- Mathematical framework for trajectory inference.
- Guarantees of reconstruction.
- Convex method, but with parameters tuning.

What I have not described

- Extensive numerical experiments.
- How we handle cell division
- Recent work on mesh free numerical optimization

Conclusion

- Mathematical framework for trajectory inference.
- Guarantees of reconstruction.
- Convex method, but with parameters tuning.

What I have not described

- Extensive numerical experiments.
- How we handle cell division
- Recent work on mesh free numerical optimization

Thank you for your attention

What about branching?

In reality cells divide and die.

Branching

Death

What about branching?

In progress (with Aymeric Baradat): studying entropy minimization with respect to the law of the **Branching Brownian Motion**.

Baradat and L. (2021). Regularized optimal transport as entropy minimization with respect to branching Brownian motion.

Handling growth in our paper: splitting

Before: unknowns marginals \mathbf{R}_{t_i} ,

$$\operatorname{Reg}((\mathbf{R}_{t_i})_i) \sim \sum_{i=1}^{T-1} \operatorname{OT}_{\varepsilon}(\mathbf{R}_{t_i}, \mathbf{R}_{t_{i+1}}).$$

Handling growth in our paper: splitting

Before: unknowns marginals \mathbf{R}_{t_i} ,

$$\operatorname{Reg}((\mathbf{R}_{t_i})_i) \sim \sum_{i=1}^{T-1} \operatorname{OT}_{\varepsilon}(\mathbf{R}_{t_i}, \mathbf{R}_{t_{i+1}}).$$

To handle **branching**: alternance of transport and growth phases.

Handling growth in our paper: splitting

Before: unknowns marginals \mathbf{R}_{t_i} ,

$$\operatorname{Reg}((\mathbf{R}_{t_i})_i) \sim \sum_{i=1}^{T-1} \operatorname{OT}_{\varepsilon}(\mathbf{R}_{t_i}, \mathbf{R}_{t_{i+1}}).$$

To handle **branching**: alternance of transport and growth phases.

