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A preview of the mathematical problem

Reconstructed trajectories?

State space X

Goal: reconstruct the law of the trajectories X;
from samples of the temporal marginals.
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2 - Algorithms and results

3 - Theoretical analysis
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Single-cell RNA sequencing

Gene expression profile
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Single-cell RNA sequencing
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Investing cell differentiation
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Schiebinger et al. (2019). Reconstruction of developmental landscapes by optimal-transport analysis
of single-cell gene expression sheds light on cellular reprogramming. 5/21



Investing cell differentiation

Stem cells Measurement A o

e . N

Ingle cell seq.

| S Ly

S X Gene expression space X

_’_'_'_. Schiebinger et al.

1/2d.  1d 3/2d. Time e 39time points.
e Total 250, 000 cells measured.

(Biological) goal: reconstruct fate of cells, unravel
the regulatory network.

Schiebinger et al. (2019). Reconstruction of developmental landscapes by optimal-transport analysis
of single-cell gene expression sheds light on cellular reprogramming. 5/21



Dataset

Displayed with Force
Layout Embedding
(FLE), a dimensionality
reduction technique

https://broadinstitute.github.io/wot/
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Disclaimer: in this presentation, we ignore cell division.
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(Entropic) optimal transport

n

® b= Z;n;l bjéyj

Probability distributions:
Zi i = Zj bj =1

Peyré and Cuturi. (2019). Computational Optimal Transport.

9/21



(Entropic) optimal transport

B=34 b;joy. | | Find = > 0 such that

,
2 Tij =

\ |22 Tij = b

and which minimizes

2
O = Z?:l aiéxi Z ﬂ-’ij‘x’i o y]‘
Probability distributions:
Zi i = Zj bj =1

Peyré and Cuturi. (2019). Computational Optimal Transport. Matrix T 9/21



(Entropic) optimal transport

B=34 b;joy. | | Find 7 > 0 such that

,
2 Tij =

(2. Tij = b
and which minimizes
2
=3 a0, Zﬁz‘jk’?i—yﬂ +6ij log 7i;
. T 1) ]
Probability distributions:

Zz‘ai:Zjbjzl

Peyré and Cuturi. (2019). Computational Optimal Transport. Matrix T 9/21



(Entropic) optimal transport

B=34 b;joy. | | Find 7 > 0 such that

a =31 aibs,
Probability distributions:
>ai=b;=1
7 law of (X, Y)with X ~aandY ~ §:

IP)(X = .CL’Z',Y = y]) = 7Tz'j

Peyré and Cuturi. (2019). Computational Optimal Transport.
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A description of (a simplified) Waddington OT
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A description of (a simplified) Waddington OT

Input: p;., ps,,...p:,. probability measures
Ouptut: R law of reconstructed trajectories.

Xy ¢
Pts /,Q-‘_i.__- Pt ¢
o o 7 ¢ "
Pto / o > °e o
o0 ° 7923
o
C I X
o Xi ® How to sample from R?
1. Compute Optimal Transport couplings.
2. Sample X, ~ py,.
19 P t1 Pt4
\ 3. Sample Xy, ~ mo(-|lx = Xy, ).
° 4. Iterate: sample X, , ~ i1 (lz = Xy,).
o \
° o "0 Pt,
® th
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Example on the dataset of Schiebinger et al.

IPS Trajectory
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“Sparse data” framework
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“Sparse data” framework

® o o ‘ Few samples per

' ' : time point, need to
share information
across time points.

Niot Wahted

6 é Time
® ' ' >

|dea: data fitting + regularization

A N

Cross entropy H (p¢, |R:,) between  Sum of optimal transport
data p;. and reconstructed distances
marginal Ry,

Schmitzer, Schafers, Wirth. (2019). Dynamic Cell Imaging in PET With Optimal Transport Regularization. 12 /21



Global Waddington OT

Unknowns: marginals R;,,

Lavenant, Zhang, Kim, Schiebinger. (2021). Towards a mathematical theory of trajectory inference.
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Unknowns: marginals R;,,

“Waddington OT”

Lavenant, Zhang, Kim, Schiebinger. (2021). Towards a mathematical theory of trajectory inference.
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Global Waddington OT

Optimal transport cost

Unknowns: marginals Ry, _

Reg((Rti)i) ~ Z OT€ (Rti7Rti—}—1)

1=1

Penalization Flt(th , ﬁtl) a H(ﬁtz

Penalization

: OTE (th ’ Rti_|_1 ) .
) )

Ground truth P,

Lavenant, Zhang, Kim, Schiebinger. (2021). Towards a mathematical theory of trajectory inference. 13/21



Numerical results (synthetic)
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Questions about (global) Waddington OT

In short: temporal couplings are given by optimal transport.
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Questions about (global) Waddington OT

In short: temporal couplings are given by optimal transport.

1. How to choose ¢ entropic parameter?
2. How can one justify it?

3. Does It converge with more and more marginals?

Short answer:
- Works if data is generated by a potential Stochastic
Differential Equation.
 Choose € = 02 At with ¢ noise level in the SDE.

16 /21



The process X, is a Stochastic Differential Equation

(SDE):

Potential SDEs

dXt — V(t, Xt)dt -+ O'dBt.
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Potential SDEs

The process X; is a Stochastic Differential Equation
(SDE):

dXt — V(t, Xt)dt -+ O'dBt.

v(t,z) = —VVU(t,z) for potential ¥ = ¥ (¢, x)

e R — R = — R = — R =
mmmmmmmmm

trajectory
-
Lo ]

0.0 0.2 0.4 06 0.8 10 17 / 5



Intuitive explanation: removing identifiability issue

Impossible to distinguish
periodic motion from cells
at rest.

Pt

v
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Intuitive explanation: removing identifiability issue

A : o
Impossible to distinguish
periodic motion from cells
at rest.

Pt X
>
Assuming

v(t,x) = —=VU(t, x)

prevents the velocity field to create periodic motion

Weinreb et al. (2018). Fundamental limits on dynamic inference from single-cell snapshots. 18/21



Rigorous result: a variational characterization

= C(|0,1], X), unknown R € P(€).

T—1
Reg((th)Z) ™~ Z OTU2At(Rti7Rt¢+1) ™~ H(R’WJ)

1=1

where W? law of Brownian motion with diffusivity o.
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Rigorous result: a variational characterization

= C(|0,1], X), unknown R € P(€).

T—1
Reg((th)Z) ™~ Z OTU2At(Rti7Rti—|—l) ™~ H(R’WU)

1=1

where W? law of Brownian motion with diffusivity o.

Take P € P(Q2) law of the SDE
dXt — —V\Il(t, Xt)dt + O'dBt.

Then
H(P|W?) < HR|W?).

forany R € P(Q2) such that Lawp (X;) = Lawgr (X;) for
anyt € [0, 1].

19 /121




Rigorous result: convergence of the reconstructed laws

Take P € P(C(|0,1], X)) the law of the SDE
dXt — —V\I!(t, Xt)dt -+ O'dBt.
Take (p¢,)1<i<T Samples from X;,. Call R*>"* minimizer of

R — Data fitting[(Ry,):, (Prnpr, )e.] + AReg(R)

7

‘K/ d heat flow

Ground truth P
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Rigorous result: convergence of the reconstructed laws

Take P € P(C(|0,1], X)) the law of the SDE
dXt — —V\If(t, Xt)dt -+ O'dBt.
Take (p¢,)1<i<T Samples from X;,. Call R*>"* minimizer of

R — Data fitting[(Ry,):, (Prnpr, )e.] + AReg(R)

7

Then
lim < lim (RT’h’A)) =P
h,A—0 \T—+oc0

for the topology of narrow
convergence.

Ground truth P
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Conclusion

Mathematical framework for trajectory inference.
Guarantees of reconstruction.
Convex method, but with parameters tuning.

What | have not described

Extensive numerical experiments.
How we handle cell division
Recent work on mesh free numerical optimization

Zhang, Chizat, Heitz and Schiebinger. (2022). Trajectory Inference via Mean-field Langevin in Path Space. 21 /21



Conclusion

Mathematical framework for trajectory inference.
Guarantees of reconstruction.
Convex method, but with parameters tuning.

What | have not described

Extensive numerical experiments.
How we handle cell division
Recent work on mesh free numerical optimization

Thank you for your attention

Zhang, Chizat, Heitz and Schiebinger. (2022). Trajectory Inference via Mean-field Langevin in Path Space. 21 /21



What about branching?

In reality cells divide
and die.
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What about branching?

In reality cells divide
and die.

m Branching

Py X Death

{(@)yon

In progress (with Aymeric Baradat): studying entropy
minimization with respect to the law of the Branching

Brownian Motion.

Baradat and L. (2021). Regularized optimal transport as entropy minimization with respect to
branching Brownian motion.
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Handling growth in our paper: splitting
Before: unknowns marginals R;,,

T—1
Reg((Rti)i) ~ Z OT, (th’7th’—|—1)’
1=1
To handle branching: alternance of transport and
growth phases.

o—-I_.I Ry, G(Ry,,R;,) measures discrepancy (e.g.

KL) between R;, (z) exp(At g(z)) and
> R; (x) with g : X — R a priori growth
rate.

time



