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The Wasserstein' space

D convex and compact domain of RY.

P(D) space of probability measures on D.

The Wasserstein space is the space P(D) endowed with the Wasserstein
distance.

Tand MONGE, LEvY, FRECHET, KANTOROVICH, RUBINSTEIN, etc.
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In this presentation

1. A quick introduction to the Wasserstein space
2. Optimal density evolution with congestion

3. Harmonic mappings valued in the Wasserstein space
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The metric tensor in the Wasserstein space

Vertical derivative A Horizontal derivative
Ht+h — Mt
HT ‘_am:v.(uv)‘ / % \

A particle located at x moves to x + hv(x)

+ Quadratic Optimal Transport: the square of the norm of the speed is

win, { [ WGP @) 5 V- (o) = -0 .

v:D—RI
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Action and geodesics

If o : [0,1] — P(D) is given, its action is

1 1
A(p) := min {2/ / |ve|? dpe dt @ Oppe + V- (ueve) = 0} )
v o Jo
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Action and geodesics

If o : [0,1] — P(D) is given, its action is

v

1 1
A(M) = min {2 / / |Vt|2 d,U/[ dt : 8t/zt + V- (,U/[Vt) = O} .
0 D

The Wasserstein distance W5 is

1 .
3Walp,v) = min {A(p) : po = p, 1 = v},

A e @ [
V| @ © @

and the minimizers are the constant-speed geodesics.
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2. Optimal density evolution with
congestion

+




What do we minimize?

min

where p : [0,1] — P(D) and po, 1 are penalized or fixed.
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What do we minimize?

min i(ﬁz +/0 /DV(X)NI(X) dx dt + /0 F(ue)dt

m

Optimal evolution - - ;
Favors congestion Penalizes congestion

where p : [0,1] — P(D) and po, 1 are penalized or fixed.

The function F: P(D) — R U {+oc} is convex, two cases:

/ f(p(x))dx “soft congestion”,
Fp) =4 /o

0if u <1, +oo otherwise “hard congestion”.

Instanciation of a Mean Field Game of first order with local coupling.
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nEn {A(u) + /01 /D V(X)pe(x) dx dt + /O1 /Df(ut(x)) dx dt] :
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mm[ / / X) e (X dxdt+/ /fuc dxdt]

Theorem

Assume V is Lipschitz and f(s) > s“ with o > —1. Assume that there exists
a competitor with finite energy.

Then, for every 0 < T; < Ty < 1, the optimal 1 belongs to L>°([Ty, Ts] x D).

Older result: use of a maximum principle by Lions to get L*°.
Used to infer the Lagrangian interpretation of Mean Field Games.

Imply regularity of the value function (CARDALIAGUET, GRABER, PORRETTA, TONON).
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Idea of the proof

If m > 1, with 8 > 1 such that H!(D) — L2%(D),

d2

@/Mm >m(m — 1)/ IV u|u™=2f " (11) + [Low order]
D D

e f[5 (urea)f

1/8
> C(m) (/ Mﬁ(m+1+a)> .
D
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Idea of the proof

If m > 1, with 8 > 1 such that H!(D) — L2%(D),

d2
—/um >m(m—1) /|V/1| " 2" (1) + [Low order]
D

dt?
o ey
D

1/8
> C(m) (/ Mﬁ(m+1+a)> )
D

Integration with respect to time and Moser iterations.
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Idea of the proof

If m > 1, with 8 > 1 such that H!(D) — L2%(D),

d2
—/um >m(m—1) /|V/1| " 2" (1) + [Low order]
D

dt?
o ey
D

1/8
> C(m) (/ Mﬁ(m+1+a)> )
D

Integration with respect to time and Moser iterations.

Need for a discretization of the temporal axis for a rigorous proof. O

9/22



Hard congestion
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Hard congestion

min {A(u)+ /0 1 /D VX (%) dx dt + /D \I/(X)/zl(x)dx}

I
with p given and the constraint u < 1.

Pressure p > 0 to enforce the constraint ; < 1 (CarRDALIAGUET, MEszaros,
SANTAMBROGIO).

Theorem
Assume VV € L9(D) with g > d.

Then p belongs to L>°([0,1) x D) and L>(]0,1), H*(D)) with a norm
depending only on ||VV||.a(py and D.

First approach: approximation by soft congestion.

Ultimately: estimate A(p + V) > 0 on {p > 0}.
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Variational formulation of the incompressible Euler equations

Least action principle: unknown Q law of a random curve x : [0,1] — P(D).

min {Eo[A(u)] : Vt, Eolu] = Lo},
with joint law at time t € {0, 1} fixed.
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Variational formulation of the incompressible Euler equations

Least action principle: unknown Q law of a random curve p : [0,1] — P(D).

rnQin {]EQ[-A(M)] : Vt7 ]EQ[Mt] = ED}7
with joint law at time t € {0, 1} fixed.

Theorem

Under reasonable assumptions on the temporal boundary conditions,
there exists at least Q one solution of the problem such that

t— Eq [/Ntlnﬂ't:|
D

is a convex function.

Similar discretization to make rigorous a formal computation of Brenier. [

Later simpler proof by Barabat and MonsAINGEON.
11/22



3. Harmonic mappings valued in

the Wasserstein space
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Measure-valued mappings

Q2 bounded set of R" with Lipschitz boundary
We study p : Q — P(D).
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Measure-valued mappings

Q) bounded set of R" with Lipschitz boundary (before Q = [0, 1] C R).

We study p: Q@ — P(D

@Q

Definition of Dir(u / |Vu|? the Dirichlet energy generalizing A.
Minimizers of Dir are called harmonic mappings (valued in the Wasserstein
space).

Iff: Q@ — Dand p(&) := dge) then Dir(p / |VA]2.
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The Dirichlet energy

Definition (Brenier (2003))
If u: Q — P(D) is given,

1
Dir(p) := min {2/ / [v[*dp © Vap+ Vp - (pv) = O} ,
v QJD
where v : Q x D — R,

If @ = [0,1] it coincides with A.
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o/ 22 Lie—yi<e dn
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Equivalence with a metric definition

Dire(p) =5 | = B B Y e yi<e A dE

n 2)
&) Q €

Co [ 1 [ WB(R(E). n(n)
i

Proposed by Korevaar, Schoen and jost for mappings valued in metric spaces.
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Equivalence with a metric definition
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Theorem

There holds
lim Dir. = Dir,
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and the convergence holds pointwisely and in the sense of I'-convergence
along the sequence e, = 2=™.
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Equivalence with a metric definition

. C W3(p
Dire(p) := ”/Q 5”/ ))]l|5 nl<e dn d€

Proposed by Korevaar, Schoen and jost for mappings valued in metric spaces.

Theorem
There holds
lim Dir. = Dir,
e—0
and the convergence holds pointwisely and in the sense of I'-convergence
along the sequence e, = 2=™.

Cannot apply the whole theory of Korevaar, ScHoen and jost because the
Wasserstein space is not a Non Positively Curved (NPC) space.

The space {u : Dir(pu) < +oo} coincides with H'(Q, P(D)) for the standard

definitions of Sobolev spaces in metric spaces (REsHETNYAK, HAJkASZ). w2



Curvature and convexity

If u,v € P(D), two ways to interpolate.
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The displacement interpolation

AW WA

+ Midpoint of the geodesic in the
Wasserstein space.

« The space (P(D),W,) is a
positively curved space: no
convexity of W2 nor Dir.
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Curvature and convexity

If u,v € P(D), two ways to interpolate.

v

The displacement interpolation The Euclidean interpolation
+ Midpoint of the geodesic in the + The Wasserstein distance square
Wasserstein space. W3 and the Dirichlet energy are
« The space (P(D), W,) is a SelUdtes
positively curved space: no « Tools from convex analysis.

convexity of W2 nor Dir.

15/22
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The Dirichlet problem

We choose uy, : 92 — P(D) the boundary data.
Definition
The Dirichlet problem is

min {Dir(p) : p = pp on 90} .
n

The solutions of the Dirichlet problem are called harmonic mappings
(valued in the Wasserstein space).
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The Dirichlet problem

We choose uy, : 92 — P(D) the boundary data.

Definition
The Dirichlet problem is

min {Dir(p) : p = pp on 90} .
n

The solutions of the Dirichlet problem are called harmonic mappings
(valued in the Wasserstein space).

Theorem
Assume pp, : 9Q — (P(D), W) is a Lipschitz mapping. Then there exists at

least one solution to the Dirichlet problem.
Tool: extension theorem for Lipschitz mappings valued in (P(D), Ws). O

Uniqueness is an open question.
16/22
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Numerics: adaptation of Benamou-Brenier

The Dirichlet problem is a convex optimization problem.
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Numerics: adaptation of Benamou-Brenier

The Dirichlet problem is a convex optimization problem.
Unknowns (E = pv is the momentum):
pn:QxD— Ry

E:QxD— R

2/, 5 )
min —_—
nE QxD 2M

Vau+Vp-E =0,
u = pp on of.

Objective:

under the constraints:

In practice: finite-dimensional “approximation” with two convex
optimization problems in duality, then ADMM.

18/22
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Some functionals F : P(D) — R U {400} are convex along geodesics, e.g.

p [ 0 In(u0) .
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Some functionals F : P(D) — R U {+oc} are convex along geodesics, e.g.

u%/ X) In(u(x

Take F : P(D) — R U {+oco} convex along generalized geodesics (and few

additional regularity property) and a boundary condition p;, : 9 — P(D)
such that sup(F o pup) < +o0.
89

Theorem
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Some functionals F : P(D) — R U {+oc} are convex along geodesics, e.g.

u%/ X) In(u(x

Take F : P(D) — R U {+oco} convex along generalized geodesics (and few
additional regularity property) and a boundary condition p;, : 9 — P(D)
such that sup(F o pup) < +o0.

o9

Theorem

Then there exists at least one solution p of the Dirichlet problem with
boundary conditions pu, such that

A(Fop) >0 and esssup(Fo ) < sup(Fo Mp)-
Q

Already known for harmonic mappings valued in Riemannian manifolds
(1sminara) and Non Positively Curved spaces (Sturm). 19/22
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Idea of the proof

First replace Dir by the approximate Dirichlet energies Dir..

If . minimizes Dir,, then for a.e. ¢ € ), the measure p. (&) is a (Wasserstein)
barycenter of the u.(n) for n € B(, ¢).

Jensen inequality for Wasserstein barycenters (AGueH, CARLIER):

Fpe(6)) < 715(5 Flaemdn

Then limit ¢ — 0 to get subharmonicity. O

20/22



Family of “elliptically contoured distributions” P..(D), think Gaussians
measures.
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Family of “elliptically contoured distributions” P..(D), think Gaussians
measures.
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Family of “elliptically contoured distributions” P,.(D), think Gaussians
measures.

Theorem

Let pp : 9Q — Pec(D) Lipschitz such that uy(€) is not singular for every
& € 0N
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Family of “elliptically contoured distributions” P,.(D), think Gaussians
measures.

Theorem

Let pp : 9Q — Pec(D) Lipschitz such that uy(€) is not singular for every
& € 0N

Then there exists a unique solution to the Dirichlet problem, it is valued in
Pec(D) and it is smooth.

21/22
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+ Continuity of ;? Even more?
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Open questions and perspectives

Optimal density evolution with congestion:
+ Continuity of ;? Even more?
Harmonic mappings valued in the Wasserstein space:

 Uniqueness in the Dirichlet problem.
« Existence for the dual problem.
 Regularity of harmonic mappings.

 Convergence of the numerical schemes.
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Open questions and perspectives

Optimal density evolution with congestion:
+ Continuity of ;? Even more?
Harmonic mappings valued in the Wasserstein space:

 Uniqueness in the Dirichlet problem.
« Existence for the dual problem.
 Regularity of harmonic mappings.

 Convergence of the numerical schemes.
Thank you for your attention

22/22
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Appendix: an explicit example

1.0 \ VDo /
NNNO0 090 v
0.5 X Q9 0 0 0 o Z ;
=~ o 0 0 0 0 o < 4t ’ g
00{ == © 0 O O O o= '
=2 o O 0 0 O ©o <
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Appendix: harmonic and barycentric interpolations
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Harmonic interpolation Barycentric interpolation
(soLomon et al., 2015)
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