PhD defense

Optimal curves and mappings valued in the Wasserstein space

Hugo LAVENANT – under the supervision of Filippo Santambrogio May 24th, 2019

The Wasserstein¹ space

D convex and compact domain of \mathbb{R}^d .

¹and Monge, Lévy, Fréchet, Kantorovich, Rubinstein, etc.

The Wasserstein¹ space

D convex and compact domain of \mathbb{R}^d .

 $\mathcal{P}(D)$ space of probability measures on D.

¹and Monge, Lévy, Fréchet, Kantorovich, Rubinstein, etc.

The Wasserstein¹ space

D convex and compact domain of \mathbb{R}^d .

 $\mathcal{P}(D)$ space of probability measures on D.

The **Wasserstein space** is the space $\mathcal{P}(D)$ endowed with the Wasserstein distance.

¹and Monge, Lévy, Fréchet, Kantorovich, Rubinstein, etc.

•.	•	•	•	•	•	00	00	00	2	0	0	۲	۲
*													۲
*													٨
*													٩
**													4
**													\$
A													\$
P.													*
A													*
*A													٠
*x													*
×													+
*													+
\star	\star	*	*	\star	★	*	*	*	*	+	+	+	+

1. A quick introduction to the Wasserstein space

2. Optimal density evolution with congestion

3. Harmonic mappings valued in the Wasserstein space

1. A quick introduction to the Wasserstein space

• Quadratic Optimal Transport: the square of the norm of the speed is

$$\min_{\mathbf{v}: D \to \mathbb{R}^d} \left\{ \int_D |\mathbf{v}(x)|^2 \ \mu(\mathrm{d} x) \ : \ \nabla \cdot (\mu \mathbf{v}) = -\partial_t \mu \right\}.$$

Action and geodesics

If $\mu : [0,1] \to \mathcal{P}(D)$ is given, its **action** is

$$\mathcal{A}(\mu) := \min_{\mathbf{v}} \left\{ \frac{1}{2} \int_0^1 \int_{\mathcal{D}} |\mathbf{v}_t|^2 \, \mathrm{d}\mu_t \, \mathrm{d}t \; : \; \partial_t \mu_t + \nabla \cdot (\mu_t \mathbf{v}_t) = 0 \right\}.$$

Action and geodesics

If $\mu : [0,1] \to \mathcal{P}(D)$ is given, its action is

$$\mathcal{A}(\mu) := \min_{\mathbf{v}} \left\{ \frac{1}{2} \int_0^1 \int_{\mathcal{D}} |\mathbf{v}_t|^2 \, \mathrm{d}\mu_t \, \mathrm{d}t \; : \; \partial_t \mu_t + \nabla \cdot (\mu_t \mathbf{v}_t) = 0 \right\}.$$

The Wasserstein distance W_2 is

$$\frac{1}{2}W_2^2(\rho,\nu) = \min_{\mu} \left\{ \mathcal{A}(\mu) : \mu_0 = \rho, \ \mu_1 = \nu \right\},\,$$

Action and geodesics

If $\mu:[0,1]\to \mathcal{P}(\mathsf{D})$ is given, its action is

$$\mathcal{A}(\mu) := \min_{\mathbf{v}} \left\{ \frac{1}{2} \int_0^1 \int_{\mathcal{D}} |\mathbf{v}_t|^2 \, \mathrm{d}\mu_t \, \mathrm{d}t \; : \; \partial_t \mu_t + \nabla \cdot (\mu_t \mathbf{v}_t) = 0 \right\}.$$

The Wasserstein distance W_2 is

$$\frac{1}{2}W_2^2(\rho,\nu) = \min_{\mu} \left\{ \mathcal{A}(\mu) : \mu_0 = \rho, \ \mu_1 = \nu \right\},\,$$

and the minimizers are the constant-speed geodesics.

2. Optimal density evolution with congestion

where $\mu : [0,1] \rightarrow \mathcal{P}(D)$ and μ_0, μ_1 are penalized or fixed.

where $\mu : [0,1] \rightarrow \mathcal{P}(D)$ and μ_0, μ_1 are penalized or fixed.

,

where $\mu : [0,1] \rightarrow \mathcal{P}(D)$ and μ_0, μ_1 are penalized or fixed.

| ,

where $\mu : [0,1] \to \mathcal{P}(D)$ and μ_0, μ_1 are penalized or fixed. The function $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ is convex, two cases:

$$F(\mu) = \left\{$$

where $\mu : [0,1] \to \mathcal{P}(D)$ and μ_0, μ_1 are penalized or fixed. The function $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ is convex, two cases:

$$F(\mu) = \begin{cases} \int_{D} f(\mu(x)) dx & \text{"soft congestion",} \end{cases}$$

where $\mu : [0,1] \to \mathcal{P}(D)$ and μ_0, μ_1 are penalized or fixed. The function $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ is convex, two cases:

 $F(\mu) = \begin{cases} \int_{D} f(\mu(x)) dx & \text{"soft congestion",} \\ 0 \text{ if } \mu \leqslant 1, +\infty \text{ otherwise "hard congestion".} \end{cases}$

where $\mu : [0,1] \to \mathcal{P}(D)$ and μ_0, μ_1 are penalized or fixed. The function $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ is convex, two cases:

 $F(\mu) = \begin{cases} \int_{D} f(\mu(x)) dx & \text{"soft congestion",} \\ 0 \text{ if } \mu \leqslant 1, +\infty \text{ otherwise "hard congestion".} \end{cases}$

Instanciation of a Mean Field Game of first order with local coupling.

$$\min_{\mu} \left[\mathcal{A}(\mu) + \int_0^1 \int_D V(x) \mu_t(x) \, \mathrm{d}x \, \mathrm{d}t + \int_0^1 \int_D f(\mu_t(x)) \, \mathrm{d}x \, \mathrm{d}t \right].$$

$$\min_{\mu} \left[\mathcal{A}(\mu) + \int_0^1 \int_D V(x) \mu_t(x) \, \mathrm{d}x \, \mathrm{d}t + \int_0^1 \int_D f(\mu_t(x)) \, \mathrm{d}x \, \mathrm{d}t \right].$$

Assume V is Lipschitz and $f''(s) \ge s^{\alpha}$ with $\alpha \ge -1$. Assume that there exists a competitor with finite energy.

$$\min_{\mu} \left[\mathcal{A}(\mu) + \int_0^1 \int_D V(x) \mu_t(x) \, \mathrm{d}x \, \mathrm{d}t + \int_0^1 \int_D f(\mu_t(x)) \, \mathrm{d}x \, \mathrm{d}t \right].$$

Assume V is Lipschitz and $f''(s) \ge s^{\alpha}$ with $\alpha \ge -1$. Assume that there exists a competitor with finite energy.

Then, for every $0 < T_1 < T_2 < 1$, the optimal μ belongs to $L^{\infty}([T_1, T_2] \times D)$.

$$\min_{\mu} \left[\mathcal{A}(\mu) + \int_0^1 \int_D V(x) \mu_t(x) \, \mathrm{d}x \, \mathrm{d}t + \int_0^1 \int_D f(\mu_t(x)) \, \mathrm{d}x \, \mathrm{d}t \right].$$

Assume V is Lipschitz and $f''(s) \ge s^{\alpha}$ with $\alpha \ge -1$. Assume that there exists a competitor with finite energy.

Then, for every $0 < T_1 < T_2 < 1$, the optimal μ belongs to $L^{\infty}([T_1, T_2] \times D)$.

Older result: use of a maximum principle by LIONS to get L^{∞} .

$$\min_{\mu} \left[\mathcal{A}(\mu) + \int_0^1 \int_D V(x) \mu_t(x) \, \mathrm{d}x \, \mathrm{d}t + \int_0^1 \int_D f(\mu_t(x)) \, \mathrm{d}x \, \mathrm{d}t \right].$$

Assume V is Lipschitz and $f''(s) \ge s^{\alpha}$ with $\alpha \ge -1$. Assume that there exists a competitor with finite energy.

Then, for every $0 < T_1 < T_2 < 1$, the optimal μ belongs to $L^{\infty}([T_1, T_2] \times D)$.

Older result: use of a maximum principle by LIONS to get L^{∞} . Used to infer the **Lagrangian** interpretation of Mean Field Games. Imply regularity of the value function (Cardaliaguet, Graber, Porretta, TONON). If m > 1,

$$\int_D \mu^m$$

If m > 1,

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\int_D\mu^m$$
If m > 1,

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \int_D \mu^m \ge m(m-1) \int_D |\nabla \mu|^2 \mu^{m-2} f^{\,\prime\prime}(\mu) + [\mathsf{Low \ order}]$$

If m > 1,

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \int_{D} \mu^m &\ge m(m-1) \int_{D} |\nabla \mu|^2 \mu^{m-2} f^{\,\prime\prime}(\mu) + [\text{Low order}] \\ &\sim \mathcal{C}(m) \int_{D} \left| \nabla \left(\mu^{(m+1+\alpha)/2} \right) \right|^2 \end{split}$$

If m > 1, with $\beta > 1$ such that $H^1(D) \hookrightarrow L^{2\beta}(D)$,

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \int_D \mu^m &\ge m(m-1) \int_D |\nabla \mu|^2 \mu^{m-2} f^{\prime\prime}(\mu) + [\text{Low order}] \\ &\sim C(m) \int_D \left| \nabla \left(\mu^{(m+1+\alpha)/2} \right) \right|^2 \\ &\ge C(m) \left(\int_D \mu^{\beta(m+1+\alpha)} \right)^{1/\beta}. \end{split}$$

If m>1, with $\beta>1$ such that $H^1(D) \hookrightarrow L^{2\beta}(D)$,

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \int_D \mu^m &\ge m(m-1) \int_D |\nabla \mu|^2 \mu^{m-2} f^{\,\prime\prime}(\mu) + [\text{Low order}] \\ &\sim C(m) \int_D \left| \nabla \left(\mu^{(m+1+\alpha)/2} \right) \right|^2 \\ &\ge C(m) \left(\int_D \mu^{\beta(m+1+\alpha)} \right)^{1/\beta}. \end{split}$$

Integration with respect to time and Moser iterations.

If m>1, with $\beta>1$ such that $H^1(D) \hookrightarrow L^{2\beta}(D)$,

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \int_D \mu^m &\ge m(m-1) \int_D |\nabla \mu|^2 \mu^{m-2} f^{\prime\prime}(\mu) + [\text{Low order}] \\ &\sim C(m) \int_D \left| \nabla \left(\mu^{(m+1+\alpha)/2} \right) \right|^2 \\ &\ge C(m) \left(\int_D \mu^{\beta(m+1+\alpha)} \right)^{1/\beta}. \end{split}$$

Integration with respect to time and Moser iterations.

Need for a discretization of the temporal axis for a rigorous proof.

$$\min_{\mu} \left[\mathcal{A}(\mu) + \int_0^1 \int_D V(x) \mu_t(x) \, \mathrm{d}x \, \mathrm{d}t + \int_D \Psi(x) \mu_1(x) \mathrm{d}x \right]$$

$$\min_{\mu} \left[\mathcal{A}(\mu) + \int_{0}^{1} \int_{D} V(x) \mu_{t}(x) \, \mathrm{d}x \, \mathrm{d}t + \int_{D} \Psi(x) \mu_{1}(x) \mathrm{d}x \right]$$

with μ_{0} given and the constraint $\mu \leq 1$.

Pressure $p \geqslant 0$ to enforce the constraint $\mu \leqslant 1$ (Cardaliaguet, Mészáros, Santambrogio).

$$\min_{\mu} \left[\mathcal{A}(\mu) + \int_0^1 \int_D V(x) \mu_t(x) \, \mathrm{d}x \, \mathrm{d}t + \int_D \Psi(x) \mu_1(x) \mathrm{d}x \right]$$

Pressure $p \geqslant 0$ to enforce the constraint $\mu \leqslant 1$ (Cardaliaguet, Mészáros, Santambrogio).

Theorem

Assume $\nabla V \in L^q(D)$ with q > d.

$$\min_{\mu} \left[\mathcal{A}(\mu) + \int_0^1 \int_D V(x) \mu_t(x) \, \mathrm{d}x \, \mathrm{d}t + \int_D \Psi(x) \mu_1(x) \mathrm{d}x \right]$$

Pressure $p \ge 0$ to enforce the constraint $\mu \le 1$ (Cardaliaguet, Mészáros, Santambrogio).

Theorem

Assume $\nabla V \in L^q(D)$ with q > d.

Then *p* belongs to $L^{\infty}([0,1) \times D)$ and $L^{\infty}([0,1), H^1(D))$ with a norm depending only on $\|\nabla V\|_{L^q(D)}$ and *D*.

$$\min_{\mu} \left[\mathcal{A}(\mu) + \int_0^1 \int_D V(x) \mu_t(x) \, \mathrm{d}x \, \mathrm{d}t + \int_D \Psi(x) \mu_1(x) \mathrm{d}x \right]$$

Pressure $p \ge 0$ to enforce the constraint $\mu \le 1$ (Cardaliaguet, Mészáros, Santambrogio).

Theorem

Assume $\nabla V \in L^q(D)$ with q > d.

Then *p* belongs to $L^{\infty}([0,1) \times D)$ and $L^{\infty}([0,1), H^1(D))$ with a norm depending only on $\|\nabla V\|_{L^q(D)}$ and *D*.

First approach: approximation by soft congestion.

Ultimately: estimate $\Delta(p + V) \ge 0$ on $\{p > 0\}$.

Variational formulation of the incompressible Euler equations

Least action principle: unknown Q law of a random curve $\mu : [0,1] \rightarrow \mathcal{P}(D)$.

$$\min_{\mathcal{O}} \left\{ \mathbb{E}_{\mathcal{Q}}[\mathcal{A}(\mu)] : \forall t, \ \mathbb{E}_{\mathcal{Q}}[\mu_t] = \mathcal{L}_{\mathcal{D}} \right\},\$$

with joint law at time $t \in \{0, 1\}$ fixed.

Variational formulation of the incompressible Euler equations

Least action principle: unknown Q law of a random curve $\mu : [0,1] \rightarrow \mathcal{P}(D)$.

$$\min_{Q} \left\{ \mathbb{E}_{Q}[\mathcal{A}(\mu)] : \forall t, \ \mathbb{E}_{Q}[\mu_{t}] = \mathcal{L}_{D} \right\},$$

with joint law at time $t \in \{0, 1\}$ fixed.

Theorem

Under reasonable assumptions on the temporal boundary conditions, there exists at least Q one solution of the problem such that

$$t\mapsto \mathbb{E}_Q\left[\int_D \mu_t \ln \mu_t\right]$$

is a convex function.

Variational formulation of the incompressible Euler equations

Least action principle: unknown Q law of a random curve $\mu : [0,1] \rightarrow \mathcal{P}(D)$.

$$\min_{Q} \left\{ \mathbb{E}_{Q}[\mathcal{A}(\mu)] : \forall t, \ \mathbb{E}_{Q}[\mu_{t}] = \mathcal{L}_{D} \right\},$$

with joint law at time $t \in \{0, 1\}$ fixed.

Theorem

Under reasonable assumptions on the temporal boundary conditions, there exists at least Q one solution of the problem such that

$$t\mapsto \mathbb{E}_Q\left[\int_D \mu_t \ln \mu_t\right]$$

is a convex function.

Similar discretization to make rigorous a formal computation of BRENIER. Later simpler proof by BARADAT and MONSAINGEON.

3. Harmonic mappings valued in the Wasserstein space

•.	•	•	•	•		00	00	00	2	2	0	۲	۲
•	•	•	•	•		00	00	00	00	2	2	۲	۲
**	*	**	•	•	00	00	00	00	00	00	2	2	۲
**	*	**	*	96	90	0	00	00	00	00	20	2	4
**	**	**	**	*	*	*	0	0	00	00	20	20	4
**	**	**	**	Φ_{ff}	φ_{g}	$\vartheta_{\vec{\theta}}$	20	1	ϑ_{θ}	20	20	20	4
**	**	**	**	Φ_{R}	$\phi_{\rm ff}$	Φ_{dl}	A.	A.	$\Phi_{\ell\ell}$	20	ϑ_{ll}	de	*
*R	**	A.	ϕ_R	ϕ_{R}	ϕ_{R}	Φ_{R}	A.	All	$\mathcal{A}_{\mathcal{C}}$	10	de	de	*
*	A.	AR	AR	ϕ_R	$\phi_{\!R}$	ϕ_{R}	AR	All	40	A.	de	de	*
*	*R	AR	AR	AR	AR	AR	AR	Alt	4	4	de la	*	*
×	the state	**	1/1	AR	AR	AR	AR	11	4	*	*	*	*
*	*	*	*	**	the	the	*	*	*	*	*	+	+
★	*	*	*	*	*	*	*	*	*	*	+	+	+
★	\star	★	★	★	\star	\star	\star	*	*	+	+	+	+

 Ω bounded set of \mathbb{R}^n with Lipschitz boundary

We study $\mu : \Omega \rightarrow \mathcal{P}(D)$.

 Ω bounded set of \mathbb{R}^n with Lipschitz boundary (before $\Omega = [0, 1] \subset \mathbb{R}$). We study $\mu : \Omega \to \mathcal{P}(D)$.

 Ω bounded set of \mathbb{R}^n with Lipschitz boundary (before $\Omega = [0,1] \subset \mathbb{R}$). We study $\mu : \Omega \to \mathcal{P}(D)$.

Definition of $Dir(\mu) = \frac{1}{2} \int_{\Omega} |\nabla \mu|^2$ the **Dirichlet energy** generalizing A.

Minimizers of Dir are called harmonic mappings (valued in the Wasserstein space).

 Ω bounded set of \mathbb{R}^n with Lipschitz boundary (before $\Omega = [0,1] \subset \mathbb{R}$). We study $\mu : \Omega \to \mathcal{P}(D)$.

Definition of $Dir(\mu) = \frac{1}{2} \int_{\Omega} |\nabla \mu|^2$ the **Dirichlet energy** generalizing A.

Minimizers of Dir are called harmonic mappings (valued in the Wasserstein space).

If $f: \Omega \to D$ and $\mu(\xi) := \delta_{f(\xi)}$ then $\operatorname{Dir}(\mu) = \frac{1}{2} \int_{\Omega} |\nabla f|^2$.

Definition (BRENIER (2003))

If $\boldsymbol{\mu}:\Omega \to \mathcal{P}(D)$ is given,

$$\operatorname{Dir}(\boldsymbol{\mu}) := \min_{\mathbf{v}} \left\{ \frac{1}{2} \int_{\Omega} \int_{D} |\mathbf{v}|^2 d\boldsymbol{\mu} : \nabla_{\Omega} \boldsymbol{\mu} + \nabla_{D} \cdot (\boldsymbol{\mu} \mathbf{v}) = 0 \right\},$$

where $\mathbf{v}: \Omega \times D \rightarrow \mathbb{R}^{nd}$.

If $\Omega = [0, 1]$ it coincides with \mathcal{A} .

 $\frac{\mathit{W}_2^2(\boldsymbol{\mu}(\boldsymbol{\xi}),\boldsymbol{\mu}(\boldsymbol{\eta}))}{\varepsilon^2}$

$$\frac{1}{\varepsilon^n}\int_\Omega \frac{W_2^2(\boldsymbol{\mu}(\xi),\boldsymbol{\mu}(\eta))}{\varepsilon^2}\mathbbm{1}_{|\xi-\eta|\leqslant\varepsilon}\,\mathrm{d}\eta$$

$$\operatorname{Dir}_{\varepsilon}(\boldsymbol{\mu}) := \frac{C_n}{2} \int_{\Omega} \frac{1}{\varepsilon^n} \int_{\Omega} \frac{W_2^2(\boldsymbol{\mu}(\xi), \boldsymbol{\mu}(\eta))}{\varepsilon^2} \mathbb{1}_{|\xi - \eta| \leqslant \varepsilon} \, \mathrm{d}\eta \, \mathrm{d}\xi$$

Proposed by KOREVAAR, SCHOEN and JOST for mappings valued in metric spaces.

$$\operatorname{Dir}_{\varepsilon}(\boldsymbol{\mu}) := \frac{C_n}{2} \int_{\Omega} \frac{1}{\varepsilon^n} \int_{\Omega} \frac{W_2^2(\boldsymbol{\mu}(\xi), \boldsymbol{\mu}(\eta))}{\varepsilon^2} \mathbb{1}_{|\xi - \eta| \leqslant \varepsilon} \, \mathrm{d}\eta \, \mathrm{d}\xi$$

Proposed by KOREVAAR, SCHOEN and JOST for mappings valued in metric spaces.

Theorem

There holds

$$\lim_{\varepsilon \to 0} \operatorname{Dir}_{\varepsilon} = \operatorname{Dir},$$

and the convergence holds pointwisely and in the sense of Γ -convergence along the sequence $\varepsilon_m = 2^{-m}$.

$$\operatorname{Dir}_{\varepsilon}(\boldsymbol{\mu}) := \frac{C_n}{2} \int_{\Omega} \frac{1}{\varepsilon^n} \int_{\Omega} \frac{W_2^2(\boldsymbol{\mu}(\xi), \boldsymbol{\mu}(\eta))}{\varepsilon^2} \mathbb{1}_{|\xi - \eta| \leqslant \varepsilon} \, \mathrm{d}\eta \, \mathrm{d}\xi$$

Proposed by KOREVAAR, SCHOEN and JOST for mappings valued in metric spaces.

Theorem

There holds

$$\lim_{\varepsilon \to 0} \operatorname{Dir}_{\varepsilon} = \operatorname{Dir},$$

and the convergence holds pointwisely and in the sense of Γ -convergence along the sequence $\varepsilon_m = 2^{-m}$.

Cannot apply the whole theory of KOREVAAR, SCHOEN and JOST because the Wasserstein space is **not** a **Non Positively Curved** (NPC) space.

$$\operatorname{Dir}_{\varepsilon}(\boldsymbol{\mu}) := \frac{C_n}{2} \int_{\Omega} \frac{1}{\varepsilon^n} \int_{\Omega} \frac{W_2^2(\boldsymbol{\mu}(\xi), \boldsymbol{\mu}(\eta))}{\varepsilon^2} \mathbb{1}_{|\xi - \eta| \leqslant \varepsilon} \, \mathrm{d}\eta \, \mathrm{d}\xi$$

Proposed by KOREVAAR, SCHOEN and JOST for mappings valued in metric spaces.

Theorem

There holds

$$\lim_{\varepsilon \to 0} \operatorname{Dir}_{\varepsilon} = \operatorname{Dir},$$

and the convergence holds pointwisely and in the sense of Γ -convergence along the sequence $\varepsilon_m = 2^{-m}$.

Cannot apply the whole theory of KOREVAAR, SCHOEN and JOST because the Wasserstein space is **not** a **Non Positively Curved** (NPC) space.

The space $\{\mu : Dir(\mu) < +\infty\}$ coincides with $H^1(\Omega, \mathcal{P}(D))$ for the standard definitions of Sobolev spaces in metric spaces (RESHETNYAK, HAJŁASZ).

Curvature and convexity

If $\mu, \nu \in \mathcal{P}(D)$, two ways to interpolate.

Curvature and convexity

If $\mu, \nu \in \mathcal{P}(D)$, two ways to interpolate.

The displacement interpolation

- Midpoint of the geodesic in the Wasserstein space.
- The space (\$\mathcal{P}(D), W_2\$) is a
 positively curved space: no
 convexity of \$W_2\$ nor Dir.

Curvature and convexity

The displacement interpolation

- Midpoint of the geodesic in the Wasserstein space.
- The space (\$\mathcal{P}(D)\$, \$W_2\$) is a
 positively curved space: no
 convexity of \$W_2\$ nor Dir.

The Euclidean interpolation

- The Wasserstein distance square W_2^2 and the Dirichlet energy are convex.
- Tools from convex analysis.

The Dirichlet problem

The Dirichlet problem

We choose $\mu_b: \partial\Omega \to \mathcal{P}(D)$ the boundary data.

Definition

The Dirichlet problem is

$$\min_{\boldsymbol{\mu}} \left\{ \operatorname{Dir}(\boldsymbol{\mu}) : \boldsymbol{\mu} = \boldsymbol{\mu}_{b} \text{ on } \partial \Omega \right\}.$$

The solutions of the Dirichlet problem are called harmonic mappings (valued in the Wasserstein space).

The Dirichlet problem

We choose $\mu_{D}: \partial\Omega \rightarrow \mathcal{P}(D)$ the boundary data.

Definition

The Dirichlet problem is

$$\min_{\boldsymbol{\mu}} \left\{ \operatorname{Dir}(\boldsymbol{\mu}) : \boldsymbol{\mu} = \boldsymbol{\mu}_{b} \text{ on } \partial \Omega \right\}.$$

The solutions of the Dirichlet problem are called harmonic mappings (valued in the Wasserstein space).

Theorem

Assume $\mu_b : \partial\Omega \to (\mathcal{P}(D), W_2)$ is a Lipschitz mapping. Then there exists at least one solution to the Dirichlet problem.

Tool: extension theorem for Lipschitz mappings valued in $(\mathcal{P}(D), W_2)$. Uniqueness is an open question.

Numerics: example

•.	•. •.	•	•	00	00	00	0	2	2	0	۲	۲
•												۲
**												۲
**												-
**												4
**												4
**												*
P.												*
*A												*
*A												*
tx.												+
×												+
*												+
\star	* *	*	*	★	★	*	*	*	*	+	+	+

Numerics: example

• • • •	00 00	00	00 00	2	2	0	۲	۲
*• *• *• *		00	00 00	2	2	2	۲	۲
** ** **	· · ·	00	90 90	00	20	2	2	۲
*****	· · ·	00	90 90	00	20	2	2	٠
* * * * *	* * * * * * * * * * * * *	96	90 90	20	20	20	2	4
* * * * *	* * * * * * * * * * * * * * *	4	20 20	20	20	20	de.	4
* * * * *	* * * * * * * * * * * * * * *	A.	40 40	10	A.	de	de	4
*R *R *R *	* * * * E	Φ_{ll}	40 40	de	de.	de	de	*
* * * * *	* * * * E	Φ_{R}	41 41	de	de.	de	de	*
the the the th	* * * * * * * * * * * * * * * * * * *	AR	11 11	A.	de.	4	*	٠
* * * *	* ** **	AR	11 11	1	*	*	*	٠
* * * *	the the	1.	1/1 1/1	*	*	*	+	٠
* * * *	* *	*	* *	*	*	*	+	+
\star \star \star	* *	★	* *	*	+	+	+	+

Numerics: adaptation of Benamou–Brenier

The Dirichlet problem is a convex optimization problem.

Numerics: adaptation of Benamou–Brenier

The Dirichlet problem is a convex optimization problem. Unknowns (${f E}=\mu{f v}$ is the momentum):

 $\boldsymbol{\mu}: \Omega \times D \to \mathbb{R}_+$ $\mathbf{E}: \Omega \times D \to \mathbb{R}^{nd}$

Numerics: adaptation of Benamou-Brenier

The Dirichlet problem is a convex optimization problem. Unknowns ($\mathbf{E} = \mu \mathbf{v}$ is the momentum):

 $\boldsymbol{\mu}: \Omega \times D \to \mathbb{R}_+$ $\mathbf{E}: \Omega \times D \to \mathbb{R}^{nd}$

Objective:

$$\min_{\boldsymbol{\mu},\mathbf{E}} \left\{ \iint_{\Omega \times D} \frac{|\mathbf{E}|^2}{2\boldsymbol{\mu}} \right\}$$

under the constraints:

$$\begin{cases} \nabla_{\Omega} \boldsymbol{\mu} + \nabla_{D} \cdot \mathbf{E} = 0, \\ \boldsymbol{\mu} = \boldsymbol{\mu}_{b} \text{ on } \partial\Omega. \end{cases}$$
Numerics: adaptation of Benamou–Brenier

The Dirichlet problem is a convex optimization problem. Unknowns ($\mathbf{E} = \mu \mathbf{v}$ is the momentum):

 $\boldsymbol{\mu}: \Omega \times D \to \mathbb{R}_+$ $\mathbf{E}: \Omega \times D \to \mathbb{R}^{nd}$

Objective:

$$\min_{\boldsymbol{\mu},\mathbf{E}} \left\{ \iint_{\Omega \times D} \frac{|\mathbf{E}|^2}{2\boldsymbol{\mu}} \right\}$$

under the constraints:

$$\begin{cases} \nabla_{\Omega} \boldsymbol{\mu} + \nabla_{D} \cdot \mathbf{E} = 0, \\ \boldsymbol{\mu} = \boldsymbol{\mu}_{b} \text{ on } \partial\Omega. \end{cases}$$

In practice: finite-dimensional "approximation" with two convex optimization problems in duality, then **ADMM**.

Some functionals $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ are convex along geodesics, e.g. $\mu \to \int_D \mu(x) \ln(\mu(x)) \, \mathrm{d}x.$

Some functionals $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ are convex along geodesics, e.g. $\mu \to \int_D \mu(x) \ln(\mu(x)) \, \mathrm{d}x.$

Theorem

Take $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ convex along generalized geodesics (and few additional regularity property) and a boundary condition $\mu_b : \partial\Omega \to \mathcal{P}(D)$ such that $\sup_{\partial\Omega} (F \circ \mu_b) < +\infty$.

Some functionals $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ are convex along geodesics, e.g. $\mu \to \int_D \mu(x) \ln(\mu(x)) \, \mathrm{d}x.$

Theorem

Take $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ convex along generalized geodesics (and few additional regularity property) and a boundary condition $\mu_b : \partial\Omega \to \mathcal{P}(D)$ such that $\sup_{\partial\Omega} (F \circ \mu_b) < +\infty$.

Then there exists at least one solution μ of the Dirichlet problem with boundary conditions μ_{b} such that

$$\Delta(F \circ \boldsymbol{\mu}) \ge 0 \qquad \text{and} \qquad \underset{\Omega}{\operatorname{ess\,sup}} (F \circ \boldsymbol{\mu}) \leqslant \underset{\partial\Omega}{\operatorname{sup}} (F \circ \boldsymbol{\mu}_b).$$

Some functionals $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ are convex along geodesics, e.g. $\mu \to \int_D \mu(x) \ln(\mu(x)) \, \mathrm{d}x.$

Theorem

Take $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ convex along generalized geodesics (and few additional regularity property) and a boundary condition $\mu_b : \partial\Omega \to \mathcal{P}(D)$ such that $\sup_{\partial\Omega} (F \circ \mu_b) < +\infty$.

Then there exists at least one solution μ of the Dirichlet problem with boundary conditions μ_{b} such that

$$\Delta(F \circ \boldsymbol{\mu}) \ge 0 \qquad \text{and} \qquad \underset{\Omega}{\operatorname{ess\,sup}} (F \circ \boldsymbol{\mu}) \leqslant \underset{\partial \Omega}{\operatorname{sup}} (F \circ \boldsymbol{\mu}_b).$$

Already known for harmonic mappings valued in Riemannian manifolds (ISHIHARA) and Non Positively Curved spaces (STURM). 19/22

First replace Dir by the approximate Dirichlet energies Dir_{ε} .

First replace Dir by the approximate Dirichlet energies $\operatorname{Dir}_{\varepsilon}$.

If μ_{ε} minimizes Dir_{ε} , then for a.e. $\xi \in \Omega$, the measure $\mu_{\varepsilon}(\xi)$ is a (Wasserstein) barycenter of the $\mu_{\varepsilon}(\eta)$ for $\eta \in B(\xi, \varepsilon)$.

First replace Dir by the approximate Dirichlet energies $\operatorname{Dir}_{\varepsilon}$.

If μ_{ε} minimizes Dir_{ε} , then for a.e. $\xi \in \Omega$, the measure $\mu_{\varepsilon}(\xi)$ is a (Wasserstein) barycenter of the $\mu_{\varepsilon}(\eta)$ for $\eta \in B(\xi, \varepsilon)$.

Jensen inequality for Wasserstein barycenters (Agueh, Carlier):

$$F(\boldsymbol{\mu}_{\varepsilon}(\xi)) \leqslant \int_{B(\xi,\varepsilon)} F(\boldsymbol{\mu}_{\varepsilon}(\eta)) \mathrm{d}\eta.$$

First replace Dir by the approximate Dirichlet energies $\operatorname{Dir}_{\varepsilon}$.

If μ_{ε} minimizes Dir_{ε} , then for a.e. $\xi \in \Omega$, the measure $\mu_{\varepsilon}(\xi)$ is a (Wasserstein) barycenter of the $\mu_{\varepsilon}(\eta)$ for $\eta \in B(\xi, \varepsilon)$.

Jensen inequality for Wasserstein barycenters (Aguen, Carlier):

$$F(\boldsymbol{\mu}_{\varepsilon}(\xi)) \leqslant \int_{B(\xi,\varepsilon)} F(\boldsymbol{\mu}_{\varepsilon}(\eta)) \mathrm{d}\eta.$$

Then limit $\varepsilon \to 0$ to get subharmonicity.

Family of "elliptically contoured distributions" $\mathcal{P}_{ec}(D)$, think Gaussians measures.

Family of "elliptically contoured distributions" $\mathcal{P}_{ec}(D),$ think Gaussians measures.

Family of "elliptically contoured distributions" $\mathcal{P}_{ec}(D)$, think Gaussians measures.

Theorem

Let $\mu_b : \partial\Omega \to \mathcal{P}_{ec}(D)$ Lipschitz such that $\mu_b(\xi)$ is not singular for every $\xi \in \partial\Omega$.

Family of "elliptically contoured distributions" $\mathcal{P}_{ec}(D)$, think Gaussians measures.

Theorem

Let $\mu_b : \partial\Omega \to \mathcal{P}_{ec}(D)$ Lipschitz such that $\mu_b(\xi)$ is not singular for every $\xi \in \partial\Omega$.

Then there exists a **unique** solution to the Dirichlet problem, it is valued in $\mathcal{P}_{ec}(D)$ and it is **smooth**.

Optimal density evolution with congestion:

• Continuity of μ ? Even more?

Optimal density evolution with congestion:

• Continuity of μ ? Even more?

Harmonic mappings valued in the Wasserstein space:

- Uniqueness in the Dirichlet problem.
- Existence for the dual problem.
- Regularity of harmonic mappings.
- Convergence of the numerical schemes.

Optimal density evolution with congestion:

• Continuity of μ ? Even more?

Harmonic mappings valued in the Wasserstein space:

- Uniqueness in the Dirichlet problem.
- Existence for the dual problem.
- Regularity of harmonic mappings.
- Convergence of the numerical schemes.

Thank you for your attention

`	•	•	•	•	•	•	•					
`	•	•	•	•	•	*	*					
•	•	*	*	*	•	*	*					
•	*	*	*	*	*	*	*	*				
•	*	*	*	*	*	*	*	*	*	*		
•	•	*	*	*	*	*	*	*	*	*		•
•	*	*	*	*	*	*	*	*	*	*	•	•
•	*	*	*	*	*	*	*	*	*	*	*	•
		*	*	*	*	*	*	*	*	*	*	•
				*	*	*	*	*	*	*	•	•
	•				*	*	*	•	*	•	•	•
						*	*	•	*	•	•	•
						•	•	•	•	•	•	•

Appendix: an explicit example

Appendix: harmonic and barycentric interpolations

Harmonic interpolation

Barycentric interpolation (SOLOMON *et al.*, 2015)