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The Wasserstein1 space

D convex and compact domain of Rd.

D

P(D) space of probability measures on D.

The Wasserstein space is the space P(D) endowed with the Wasserstein
distance.

1and Monge, Lévy, Fréchet, Kantorovich, Rubinstein, etc.
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In this presentation

1. A quick introduction to the Wasserstein space

2. Optimal density evolution with congestion

3. Harmonic mappings valued in the Wasserstein space
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1. A quick introduction to the
Wasserstein space



The metric tensor in the Wasserstein space

µt

µt+h

Vertical derivative

µt+h − µt

h

Horizontal derivative

v

A particle located at x moves to x+ hv(x)

−∂tµ = ∇ · (µv)

• Quadratic Optimal Transport: the square of the norm of the speed is

min
v:D→Rd

{ˆ
D
|v(x)|2 µ(dx) : ∇ · (µv) = −∂tµ

}
.

5/22



The metric tensor in the Wasserstein space

µt

µt+h

Vertical derivative

µt+h − µt

h

Horizontal derivative

v

A particle located at x moves to x+ hv(x)

−∂tµ = ∇ · (µv)

• Quadratic Optimal Transport: the square of the norm of the speed is

min
v:D→Rd

{ˆ
D
|v(x)|2 µ(dx) : ∇ · (µv) = −∂tµ

}
.

5/22



The metric tensor in the Wasserstein space

µt µt+h

Vertical derivative

µt+h − µt

h

Horizontal derivative

v

A particle located at x moves to x+ hv(x)

−∂tµ = ∇ · (µv)

• Quadratic Optimal Transport: the square of the norm of the speed is

min
v:D→Rd

{ˆ
D
|v(x)|2 µ(dx) : ∇ · (µv) = −∂tµ

}
.

5/22



The metric tensor in the Wasserstein space

µt µt+h

Vertical derivative

µt+h − µt

h

Horizontal derivative

v

A particle located at x moves to x+ hv(x)

−∂tµ = ∇ · (µv)

• Quadratic Optimal Transport: the square of the norm of the speed is

min
v:D→Rd

{ˆ
D
|v(x)|2 µ(dx) : ∇ · (µv) = −∂tµ

}
.

5/22



The metric tensor in the Wasserstein space

µt µt+h

Vertical derivative

µt+h − µt

h

Horizontal derivative

v

A particle located at x moves to x+ hv(x)

−∂tµ = ∇ · (µv)

• Quadratic Optimal Transport: the square of the norm of the speed is

min
v:D→Rd

{ˆ
D
|v(x)|2 µ(dx) : ∇ · (µv) = −∂tµ

}
.

5/22



The metric tensor in the Wasserstein space

µt µt+h

Vertical derivative

µt+h − µt

h

Horizontal derivative

v

A particle located at x moves to x+ hv(x)

−∂tµ = ∇ · (µv)

• Quadratic Optimal Transport: the square of the norm of the speed is

min
v:D→Rd

{ˆ
D
|v(x)|2 µ(dx) : ∇ · (µv) = −∂tµ

}
.

5/22



Action and geodesics

If µ : [0, 1] → P(D) is given, its action is

A(µ) := min
v

{
1

2

ˆ 1

0

ˆ
D
|vt|2 dµt dt : ∂tµt +∇ · (µtvt) = 0

}
.

The Wasserstein distance W2 is

1

2
W2

2(ρ, ν) = min
µ

{A(µ) : µ0 = ρ, µ1 = ν} ,

and the minimizers are the constant-speed geodesics.
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2. Optimal density evolution with
congestion



What do we minimize?

min
µ



A(µ)︸ ︷︷ ︸
Optimal evolution

+

ˆ 1

0

ˆ
D
V(x)µt(x) dx dt︸ ︷︷ ︸

Favors congestion

+

ˆ 1

0

F(µt)dt︸ ︷︷ ︸
Penalizes congestion

 ,

where µ : [0, 1] → P(D) and µ0, µ1 are penalized or fixed.

The function F : P(D) → R ∪ {+∞} is convex, two cases:

F(µ) =


ˆ
D
f(µ(x))dx “so t congestion”,

0 if µ 6 1, +∞ otherwise “hard congestion”.

Instanciation of a Mean Field Game of first order with local coupling.
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So t congestion

min
µ

[
A(µ) +

ˆ 1

0

ˆ
D
V(x)µt(x) dx dt+

ˆ 1

0

ˆ
D
f(µt(x)) dx dt

]
.

Theorem
Assume V is Lipschitz and f ′′(s) > sα with α > −1. Assume that there exists
a competitor with finite energy.

Then, for every 0 < T1 < T2 < 1, the optimal µ belongs to L∞([T1, T2]× D).

Older result: use of a maximum principle by Lions to get L∞.

Used to infer the Lagrangian interpretation of Mean Field Games.
Imply regularity of the value function (Cardaliaguet, Graber, Porretta, Tonon).
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Idea of the proof

If m > 1,

with β > 1 such that H1(D) ↪→ L2β(D),

d2

dt2

ˆ
D
µm

> m(m− 1)

ˆ
D
|∇µ|2µm−2f ′′(µ) + [Low order]

∼ C(m)

ˆ
D

∣∣∣∇(
µ(m+1+α)/2

)∣∣∣2
> C(m)

(ˆ
D
µβ(m+1+α)

)1/β

.

Integration with respect to time and Moser iterations.
Need for a discretization of the temporal axis for a rigorous proof.
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Hard congestion

min
µ

[
A(µ) +

ˆ 1

0

ˆ
D
V(x)µt(x) dx dt+

ˆ
D
Ψ(x)µ1(x)dx

]
with µ0 given and the constraint µ 6 1.

Pressure p > 0 to enforce the constraint µ 6 1 (Cardaliaguet, Mészáros,
Santambrogio).
Theorem
Assume ∇V ∈ Lq(D) with q > d.

Then p belongs to L∞([0, 1)× D) and L∞([0, 1),H1(D)) with a norm
depending only on ‖∇V‖Lq(D) and D.

First approach: approximation by so t congestion.

Ultimately: estimate ∆(p+ V) > 0 on {p > 0}.
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Variational formulation of the incompressible Euler equations

Least action principle: unknown Q law of a random curve µ : [0, 1] → P(D).

min
Q

{EQ[A(µ)] : ∀t, EQ[µt] = LD} ,

with joint law at time t ∈ {0, 1} fixed.

Theorem
Under reasonable assumptions on the temporal boundary conditions,
there exists at least Q one solution of the problem such that

t 7→ EQ
[ˆ

D
µt lnµt

]
is a convex function.

Similar discretization to make rigorous a formal computation of Brenier.

Later simpler proof by Baradat and Monsaingeon.
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3. Harmonic mappings valued in
the Wasserstein space



Measure-valued mappings

Ω bounded set of Rn with Lipschitz boundary

(before Ω = [0, 1] ⊂ R).

We study µ : Ω → P(D).

Ω
D

µ•
ξ

µ(ξ)
•

η
µ(η)

•
ξ

•
δf(ξ)

Definition of Dir(µ) = 1

2

ˆ
Ω

|∇µ|2 the Dirichlet energy generalizing A.

Minimizers of Dir are called harmonic mappings (valued in the Wasserstein
space).

If f : Ω → D and µ(ξ) := δf(ξ) then Dir(µ) = 1

2

ˆ
Ω

|∇f|2.
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Ω
D

µ

•
ξ

µ(ξ)
•

η
µ(η)

•
ξ

•
δf(ξ)
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2

ˆ
Ω
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The Dirichlet energy

Definition (Brenier (2003))
If µ : Ω → P(D) is given,

Dir(µ) := min
v

{
1

2

ˆ
Ω

ˆ
D
|v|2dµ : ∇Ωµ+∇D · (µv) = 0

}
,

where v : Ω× D→ Rnd.

If Ω = [0, 1] it coincides with A.
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Equivalence with a metric definition

Dirε(µ) :=
Cn
2

ˆ
Ω

1

εn

ˆ
Ω

W2
2(µ(ξ),µ(η))

ε2

1|ξ−η|6ε dη dξ

Proposed by Korevaar, Schoen and Jost for mappings valued in metric spaces.

Theorem
There holds

lim
ε→0

Dirε = Dir,

and the convergence holds pointwisely and in the sense of Γ-convergence
along the sequence εm = 2−m.

Cannot apply the whole theory of Korevaar, Schoen and Jost because the
Wasserstein space is not a Non Positively Curved (NPC) space.
The space {µ : Dir(µ) < +∞} coincides with H1(Ω,P(D)) for the standard
definitions of Sobolev spaces in metric spaces (Reshetnyak, Hajłasz).
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Curvature and convexity

If µ, ν ∈ P(D), two ways to interpolate.

µ ν

The displacement interpolation

• Midpoint of the geodesic in the
Wasserstein space.

• The space (P(D),W2) is a
positively curved space: no
convexity of W2

2 nor Dir.

The Euclidean interpolation

• The Wasserstein distance square
W2

2 and the Dirichlet energy are
convex.

• Tools from convex analysis.

15/22



Curvature and convexity

If µ, ν ∈ P(D), two ways to interpolate.

µ ν

The displacement interpolation

• Midpoint of the geodesic in the
Wasserstein space.

• The space (P(D),W2) is a
positively curved space: no
convexity of W2

2 nor Dir.

The Euclidean interpolation

• The Wasserstein distance square
W2

2 and the Dirichlet energy are
convex.

• Tools from convex analysis.

15/22



Curvature and convexity

If µ, ν ∈ P(D), two ways to interpolate.

µ ν

The displacement interpolation

• Midpoint of the geodesic in the
Wasserstein space.

• The space (P(D),W2) is a
positively curved space: no
convexity of W2

2 nor Dir.

The Euclidean interpolation

• The Wasserstein distance square
W2

2 and the Dirichlet energy are
convex.

• Tools from convex analysis.

15/22



The Dirichlet problem

We choose µb : ∂Ω → P(D) the boundary data.

Definition
The Dirichlet problem is

min
µ

{Dir(µ) : µ = µb on ∂Ω} .

The solutions of the Dirichlet problem are called harmonic mappings
(valued in the Wasserstein space).

Theorem
Assume µb : ∂Ω → (P(D),W2) is a Lipschitz mapping. Then there exists at
least one solution to the Dirichlet problem.

Tool: extension theorem for Lipschitz mappings valued in (P(D),W2).

Uniqueness is an open question.
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Numerics: example

17/22



Numerics: example

17/22



Numerics: adaptation of Benamou–Brenier

The Dirichlet problem is a convex optimization problem.

Unknowns (E = µv is the momentum):

µ : Ω× D→ R+

E : Ω× D→ Rnd

Objective:
min
µ,E

{¨
Ω×D

|E|2

2µ

}
under the constraints: {

∇Ωµ+∇D · E = 0,

µ = µb on ∂Ω.

In practice: finite-dimensional “approximation” with two convex
optimization problems in duality, then ADMM.
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Maximum principle

Some functionals F : P(D) → R ∪ {+∞} are convex along geodesics, e.g.

µ →
ˆ
D
µ(x) ln(µ(x)) dx.

Theorem
Take F : P(D) → R ∪ {+∞} convex along generalized geodesics (and few
additional regularity property) and a boundary condition µb : ∂Ω → P(D)
such that sup

∂Ω
(F ◦ µb) < +∞.

Then there exists at least one solution µ of the Dirichlet problem with
boundary conditions µb such that

∆(F ◦ µ) > 0 and ess sup
Ω

(F ◦ µ) 6 sup
∂Ω

(F ◦ µb).

Already known for harmonic mappings valued in Riemannian manifolds
(Ishihara) and Non Positively Curved spaces (Sturm).
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Idea of the proof

First replace Dir by the approximate Dirichlet energies Dirε.

If µε minimizes Dirε, then for a.e. ξ ∈ Ω, the measure µε(ξ) is a (Wasserstein)
barycenter of the µε(η) for η ∈ B(ξ, ε).

Ω

•

2ε

Jensen inequality for Wasserstein barycenters (Agueh, Carlier):

F(µε(ξ)) 6
 
B(ξ,ε)

F(µε(η))dη.

Then limit ε → 0 to get subharmonicity.
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A special case

Family of “elliptically contoured distributions” Pec(D), think Gaussians
measures.
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Family of “elliptically contoured distributions” Pec(D), think Gaussians
measures.

Theorem
Let µb : ∂Ω → Pec(D) Lipschitz such that µb(ξ) is not singular for every
ξ ∈ ∂Ω.

Then there exists a unique solution to the Dirichlet problem, it is valued in
Pec(D) and it is smooth.
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Open questions and perspectives

Optimal density evolution with congestion:

• Continuity of µ? Even more?

Harmonic mappings valued in the Wasserstein space:

• Uniqueness in the Dirichlet problem.
• Existence for the dual problem.
• Regularity of harmonic mappings.
• Convergence of the numerical schemes.

Thank you for your attention
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Appendix: an explicit example
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Appendix: harmonic and barycentric interpolations

Harmonic interpolation Barycentric interpolation
(Solomon et al., 2015)
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