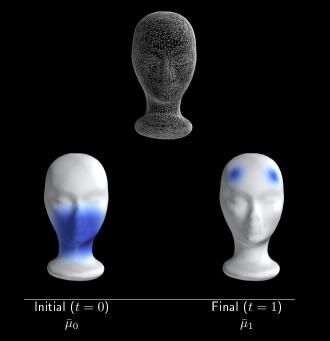
Dynamical Optimal Transport on Discrete Surfaces

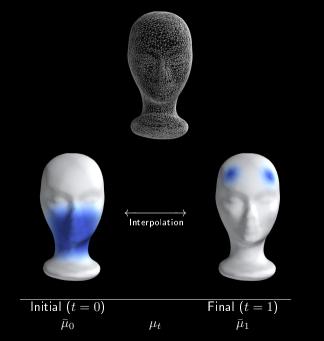
Hugo Lavenant*, Sebastian Claici[†], Edward Chien[†] and Justin Solomon[†]

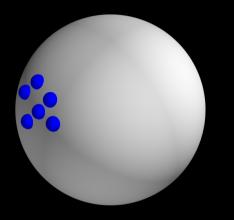
*Université Paris-Sud and [†]Massachusetts Institute of Technology

SIGGRAPH Asia 2018

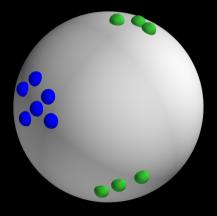
Fixed surface \mathcal{M} . Given by a **triangle mesh**.



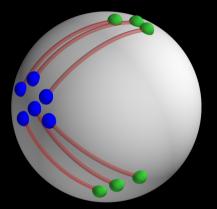




 $\bar{\mu}_0 = \sum_i a_i \delta_{x_i},$



$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

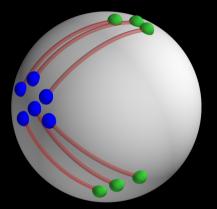


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

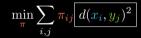
$$\min_{\pi} \sum_{i,j} \pi_{ij} \ d(x_i, y_j)^2$$

with conservation of mass constraints

$$\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$$

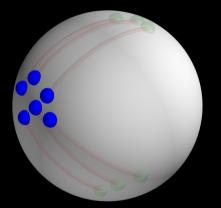


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \; ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

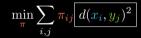


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$

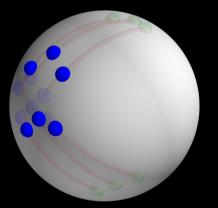


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

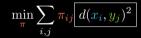


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$

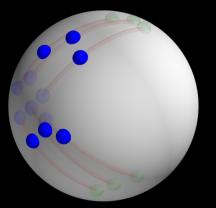


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

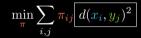


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$



$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \; ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

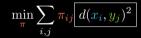


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$

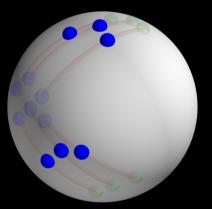


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

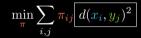


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$

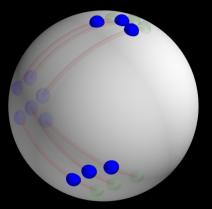


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

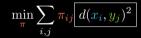


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$

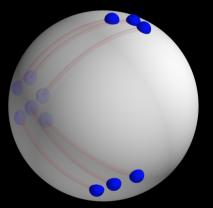


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

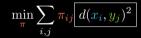


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$



$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \; ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$



with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$

Primal Problem

 $\mathsf{Unknown}: \mu: \underbrace{[0,1]}_{\mathsf{time}} \times \underbrace{\mathcal{M}}_{\mathsf{space}} \to \mathbb{R}_+$

Primal Problem Unknown : $\mu : [0,1] \times \underbrace{\mathcal{M}}_{\text{space}} \to \mathbb{R}_+$ $\min_{\mu,\mathbf{m}} \left\{ \int_0^1 \int_{\mathcal{M}} \frac{|\mathbf{m}|^2}{2\mu} \right\}$

where $\mathbf{m} = \mu \mathbf{v}$ is the momentum, under the constraints

$$\begin{cases} \partial_t \mu + \nabla \cdot \mathbf{m} = 0, \\ \mu_0 = \bar{\mu}_0, \\ \mu_1 = \bar{\mu}_1. \end{cases}$$

Primal Problem Unknown : $\mu : [0,1] \times \underbrace{\mathcal{M}}_{\mathsf{space}} \to \mathbb{R}_+$ $\min_{\mu,\mathbf{m}} \left\{ \int_0^1 \int_{\mathcal{M}} \frac{|\mathbf{m}|^2}{2\mu} \right\}$

where $\mathbf{m}=\mu\mathbf{v}$ is the momentum, under the constraints

$$\mathsf{Dual}\;\mathsf{Problem}$$
 $\mathsf{Unknown}: arphi: [0,1] imes \mathcal{M} o \mathbb{I}$

$$\max_{\varphi} \left\{ \int_{\mathcal{M}} \varphi(1, \cdot) \bar{\mu}_1 - \int_{\mathcal{M}} \varphi(0, \cdot) \bar{\mu}_0 \right\}$$

under the constraint

$$\partial_t \varphi + \frac{1}{2} \left| \nabla \varphi \right|^2 \leqslant 0.$$

$$\begin{cases} \partial_t \mu + \nabla \cdot \mathbf{m} = 0\\ \mu_0 = \bar{\mu}_0,\\ \mu_1 = \bar{\mu}_1. \end{cases}$$

Primal Problem Unknown : $\mu : [0,1] \times \underbrace{\mathcal{M}}_{\text{space}} \to \mathbb{R}_+$ $\min_{\mu,\mathbf{m}} \left\{ \int_0^1 \int_{\mathcal{M}} \frac{|\mathbf{m}|^2}{2\mu} \right\}$

where $\mathbf{m}=\mu\mathbf{v}$ is the momentum, under the constraints

$$\begin{cases} \partial_t \mu + \boxed{\nabla \cdot \mathbf{m}} = 0, \\ \mu_0 = \bar{\mu}_0, \\ \mu_1 = \bar{\mu}_1. \end{cases}$$

 $\mathsf{Dual}\;\mathsf{Problem}$ $\mathsf{Unknown}:arphi:[0,1] imes\mathcal{M} o\mathbb{R}$

$$\max_{\varphi} \left\{ \int_{\mathcal{M}} \varphi(1, \cdot) \bar{\mu}_1 - \int_{\mathcal{M}} \varphi(0, \cdot) \bar{\mu}_0 \right\}$$

under the constraint

$$\partial_t \varphi + \frac{1}{2} \left| \nabla \varphi \right|^2 \leqslant 0.$$

In the continuous world

Static OT = Dynamical OT

Maas, Jan. Gradient flows of the entropy for finite Markov chains. 2011.

On discrete surfaces

Static OT \neq Dynamical OT

Maas, Jan. Gradient flows of the entropy for finite Markov chains. 2011.

On discrete surfaces

Static OT
$$\neq$$
 Dynamical OT

Maas, Jan. Gradient flows of the entropy for finite Markov chains. 2011.

Our contribution : discretization and implementation of dynamical OT

- abla, $abla\cdot$ on a curved surface;
- Average to go from faces $({f m})$ to vertices (μ) to compute $\int\int {|{f m}|^2\over 2\mu}$;
- Preserving the Riemannian structure of the Wasserstein space.

Code available at https://github.com/HugoLav/DynamicalOTSurfaces

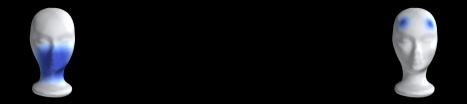
Our contribution : discretization and implementation of dynamical OT

- abla, $abla \cdot$ on a curved surface;
- Average to go from faces $({f m})$ to vertices (μ) to compute $\int\int rac{|{f m}|^2}{2\mu}$;
- Preserving the Riemannian structure of the Wasserstein space.

We have a single finite-dimensional convex (SOCP) optimization problem :

- Size $\sim N imes M$ (N temporal grid, M number of vertices).
- Alternating Direction Method of Multipliers (only non local step : space-time fixed Poisson problem)
- $N=30,\,5000$ vertices : ~ 5 minutes.

Code available at https://github.com/HugoLav/DynamicalOTSurfaces



Positivity and mass preservation are enforced automatically

Adding
$$+rac{lpha}{2}\int_0^1\int_{\mathcal{M}}\mu_t^2~\mathrm{d}t$$
 in the (primal) objective functional.

Adding $+\frac{lpha}{2}\int_0^1\int_{\mathcal{M}}\mu_t^2~\mathrm{d}t$ in the (primal) objective functional.

- Still convex, only a few lines of codes to add.
- No problem in taking $\alpha = 0$.

Our method

Our method

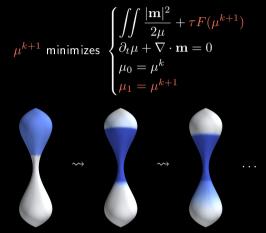
Our method

Our method

F functional on the space of densities, we want to compute the gradient flow

$$\dot{\mu} = -\nabla_W F(\mu).$$

If μ^k is known, to compute μ^{k+1} we use the JKO scheme, same complexity as before.



Jordan, Richard, David Kinderlehrer, and Felix Otto. *The variational formulation of the Fokker–Planck equation*. 1998. F is gravitational energy + constraint for the density to stay below a threshold :

Maury, Bertrand, Aude Roudneff-Chupin, and Filippo Santambrogio. A macroscopic crowd motion model of gradient flow type. 2010.

 ${\it F}$ is gravitational energy + constraint for the density to stay below a threshold :

Maury, Bertrand, Aude Roudneff-Chupin, and Filippo Santambrogio. A macroscopic crowd motion model of gradient flow type. 2010.

F is $\int_{\mathcal{M}} \mu^p$ with p>1 : slow diffusion (porous medium).

F is $\int_{\mathcal{M}} \mu^p$ with p > 1 : slow diffusion (porous medium).

On Discrete Surfaces, use Dynamical OT

- Everything is about convex optimization.
- ullet Only need to know how to compute abla on a surface.
- Yet complex geometries are handled.

On Discrete Surfaces, use Dynamical OT

- Everything is about convex optimization.
- ullet Only need to know how to compute abla on a surface.
- Yet complex geometries are handled.

Thank you for your attention