# Dynamical Optimal Transport on Discrete Surfaces

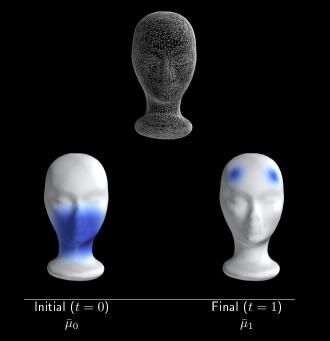
Hugo Lavenant\*, Sebastian Claici<sup>†</sup>, Edward Chien<sup>†</sup> and Justin Solomon<sup>†</sup>

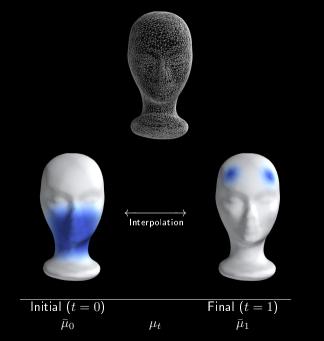
\*Université Paris-Sud and <sup>†</sup>Massachusetts Institute of Technology

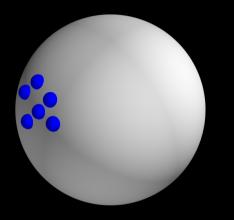
SIGGRAPH Asia 2018



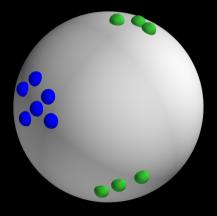
Fixed surface  $\mathcal{M}$ . Given by a **triangle mesh**.



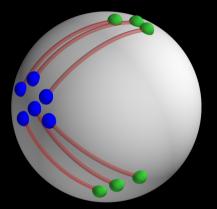




 $\bar{\mu}_0 = \sum_i a_i \delta_{x_i},$ 



$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

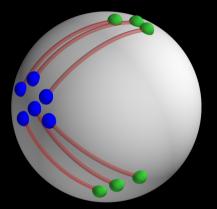


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

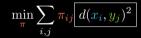
$$\min_{\pi} \sum_{i,j} \pi_{ij} \ d(x_i, y_j)^2$$

with conservation of mass constraints

$$\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$$

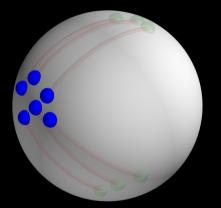


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \; ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

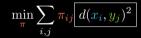


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$ 

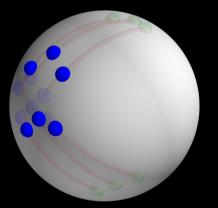


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

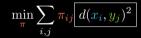


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$ 

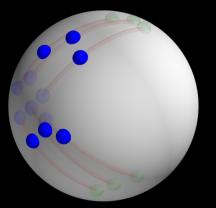


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

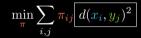


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$ 



$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \; ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

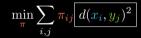


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$ 

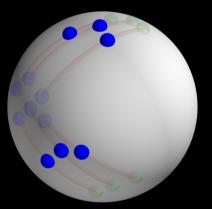


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

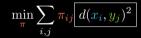


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$ 

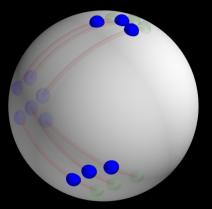


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

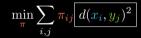


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$ 

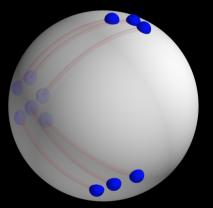


$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \ ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$

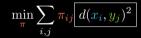


with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$ 



$$ar{\mu}_0 = \sum_i a_i \delta_{x_i}, \; ar{\mu}_1 = \sum_j b_j \delta_{y_j}$$



with conservation of mass constraints

 $\begin{cases} \sum_{j} \pi_{ij} = a_i, \\ \sum_{i} \pi_{ij} = b_j, \end{cases}$ 

Primal Problem

 $\mathsf{Unknown}: \mu: \underbrace{[0,1]}_{\mathsf{time}} \times \underbrace{\mathcal{M}}_{\mathsf{space}} \to \mathbb{R}_+$ 

Primal Problem Unknown :  $\mu : [0,1] \times \underbrace{\mathcal{M}}_{\text{space}} \to \mathbb{R}_+$  $\min_{\mu,\mathbf{m}} \left\{ \int_0^1 \int_{\mathcal{M}} \frac{|\mathbf{m}|^2}{2\mu} \right\}$ 

where  $\mathbf{m} = \mu \mathbf{v}$  is the momentum, under the constraints

$$\begin{cases} \partial_t \mu + \nabla \cdot \mathbf{m} = 0, \\ \mu_0 = \bar{\mu}_0, \\ \mu_1 = \bar{\mu}_1. \end{cases}$$

Primal Problem Unknown :  $\mu : [0,1] \times \underbrace{\mathcal{M}}_{\mathsf{space}} \to \mathbb{R}_+$  $\min_{\mu,\mathbf{m}} \left\{ \int_0^1 \int_{\mathcal{M}} \frac{|\mathbf{m}|^2}{2\mu} \right\}$ 

where  $\mathbf{m}=\mu\mathbf{v}$  is the momentum, under the constraints

$$\mathsf{Dual}\;\mathsf{Problem}$$
 $\mathsf{Unknown}: arphi: [0,1] imes \mathcal{M} o \mathbb{I}$ 

$$\max_{\varphi} \left\{ \int_{\mathcal{M}} \varphi(1, \cdot) \bar{\mu}_1 - \int_{\mathcal{M}} \varphi(0, \cdot) \bar{\mu}_0 \right\}$$

under the constraint

$$\partial_t \varphi + \frac{1}{2} \left| \nabla \varphi \right|^2 \leqslant 0.$$

$$\begin{cases} \partial_t \mu + \nabla \cdot \mathbf{m} = 0\\ \mu_0 = \bar{\mu}_0,\\ \mu_1 = \bar{\mu}_1. \end{cases}$$

Primal Problem Unknown :  $\mu : [0,1] \times \underbrace{\mathcal{M}}_{\text{space}} \to \mathbb{R}_+$  $\min_{\mu,\mathbf{m}} \left\{ \int_0^1 \int_{\mathcal{M}} \frac{|\mathbf{m}|^2}{2\mu} \right\}$ 

where  $\mathbf{m}=\mu\mathbf{v}$  is the momentum, under the constraints

$$\begin{cases} \partial_t \mu + \boxed{\nabla \cdot \mathbf{m}} = 0, \\ \mu_0 = \bar{\mu}_0, \\ \mu_1 = \bar{\mu}_1. \end{cases}$$

 $\mathsf{Dual}\;\mathsf{Problem}$  $\mathsf{Unknown}:arphi:[0,1] imes\mathcal{M} o\mathbb{R}$ 

$$\max_{\varphi} \left\{ \int_{\mathcal{M}} \varphi(1, \cdot) \bar{\mu}_1 - \int_{\mathcal{M}} \varphi(0, \cdot) \bar{\mu}_0 \right\}$$

under the constraint

$$\partial_t \varphi + \frac{1}{2} \left| \nabla \varphi \right|^2 \leqslant 0.$$

In the continuous world

## Static OT = Dynamical OT

Maas, Jan. Gradient flows of the entropy for finite Markov chains. 2011.

On discrete surfaces

## Static OT $\neq$ Dynamical OT

Maas, Jan. Gradient flows of the entropy for finite Markov chains. 2011.

On discrete surfaces

Static OT 
$$\neq$$
 Dynamical OT

Maas, Jan. Gradient flows of the entropy for finite Markov chains. 2011.

Our contribution : discretization and implementation of dynamical OT

- abla,  $abla\cdot$  on a curved surface;
- Average to go from faces  $({f m})$  to vertices  $(\mu)$  to compute  $\int\int {|{f m}|^2\over 2\mu}$  ;
- Preserving the Riemannian structure of the Wasserstein space.

Code available at https://github.com/HugoLav/DynamicalOTSurfaces

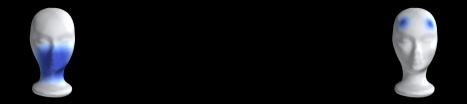
Our contribution : discretization and implementation of dynamical OT

- abla,  $abla \cdot$  on a curved surface;
- Average to go from faces  $({f m})$  to vertices  $(\mu)$  to compute  $\int\int rac{|{f m}|^2}{2\mu}$  ;
- Preserving the Riemannian structure of the Wasserstein space.

We have a single finite-dimensional convex (SOCP) optimization problem :

- Size  $\sim N imes M$  (N temporal grid, M number of vertices).
- Alternating Direction Method of Multipliers (only non local step : space-time fixed Poisson problem)
- $N=30,\,5000$  vertices :  $\sim 5$  minutes.

**Code available at** https://github.com/HugoLav/DynamicalOTSurfaces











### Positivity and mass preservation are enforced automatically





Adding 
$$+rac{lpha}{2}\int_0^1\int_{\mathcal{M}}\mu_t^2~\mathrm{d}t$$
 in the (primal) objective functional.



# Adding $+\frac{lpha}{2}\int_0^1\int_{\mathcal{M}}\mu_t^2~\mathrm{d}t$ in the (primal) objective functional.

- Still convex, only a few lines of codes to add.
- No problem in taking  $\alpha = 0$ .











# 









Our method







### Our method







### Our method





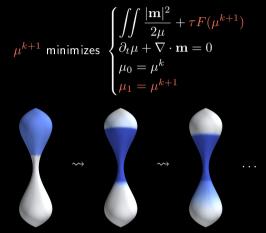
### Our method



F functional on the space of densities, we want to compute the gradient flow

$$\dot{\mu} = -\nabla_W F(\mu).$$

If  $\mu^k$  is known, to compute  $\mu^{k+1}$  we use the JKO scheme, same complexity as before.



Jordan, Richard, David Kinderlehrer, and Felix Otto. *The variational formulation of the Fokker–Planck equation*. 1998. F is gravitational energy + constraint for the density to stay below a threshold :



Maury, Bertrand, Aude Roudneff-Chupin, and Filippo Santambrogio. A macroscopic crowd motion model of gradient flow type. 2010.

 ${\it F}$  is gravitational energy + constraint for the density to stay below a threshold :



Maury, Bertrand, Aude Roudneff-Chupin, and Filippo Santambrogio. A macroscopic crowd motion model of gradient flow type. 2010.

F is  $\int_{\mathcal{M}} \mu^p$  with p>1 : slow diffusion (porous medium).



F is  $\int_{\mathcal{M}} \mu^p$  with p > 1 : slow diffusion (porous medium).



### On Discrete Surfaces, use Dynamical OT

- Everything is about convex optimization.
- ullet Only need to know how to compute abla on a surface.
- Yet complex geometries are handled.

### On Discrete Surfaces, use Dynamical OT

- Everything is about convex optimization.
- ullet Only need to know how to compute abla on a surface.
- Yet complex geometries are handled.

Thank you for your attention