

What distance to use between probabilities over probabilities?

Hugo Lavenant

Bocconi University

Optimal Transport Cargese Workshop

Cargèse (France), April 9, 2024

Joint work with

Marta Catalano (Luiss University)

Our article Hierarchical Integral Probability Metrics: A distance on random probability measures with low sample complexity is on arxiv!

 \mathbb{X} set (think subset of \mathbb{R}^d)

 \mathbb{X} set (think subset of \mathbb{R}^d)

 $\mathcal{P}(\mathbb{X})$ probability distributions over \mathbb{X} Typical element P

 \mathbb{X} set (think subset of \mathbb{R}^d)

 $\mathcal{P}(\mathbb{X})$ probability distributions over \mathbb{X} Typical element P

 $\mathcal{P}(\mathcal{P}(\mathbb{X}))$ probability distributions over $\mathcal{P}(\mathbb{X})$ Typical element \mathbb{Q} , or $\tilde{P}\sim\mathbb{Q}$ random probability

 \mathbb{X} set (think subset of \mathbb{R}^d)

 $\mathcal{P}(\mathbb{X})$ probability distributions over \mathbb{X} Typical element P

 $\mathcal{P}(\mathcal{P}(\mathbb{X}))$ probability distributions over $\mathcal{P}(\mathbb{X})$ Typical element \mathbb{Q} , or $\tilde{P}\sim\mathbb{Q}$ random probability

What distance to put on the space $\mathcal{P}(\mathcal{P}(X))$?

- \mathbb{X} set (think subset of \mathbb{R}^d)
- $\mathcal{P}(\mathbb{X})$ probability distributions over \mathbb{X} Typical element P
- $\mathcal{P}(\mathcal{P}(\mathbb{X}))$ probability distributions over $\mathcal{P}(\mathbb{X})$ Typical element \mathbb{Q} , or $\tilde{P}\sim\mathbb{Q}$ random probability

What distance to put on the space $\mathcal{P}(\mathcal{P}(X))$?

Desiderata:

This talk

- Metrizing weak topology.
- Computation from samples: satistical and numerical complexity.
- · Explicit formula, upper and lower bounds.

1 - Why? Bayesian Nonparametric Statistics

2 - Wasserstein over Wasserstein and its sample complexity

3 - A new distance with a better sample complexity

2 - Wasserstein over Wasserstein and its sample complexity

3 - A new distance with a better sample complexity

 p_{θ} distributions over \mathbb{X} indexed by $\theta \in \Theta$.

Goal: infer θ from data.

 p_{θ} distributions over \mathbb{X} indexed by $\theta \in \Theta$.

Goal: infer θ from data.

 p_{θ} distributions over \mathbb{X} indexed by $\theta \in \Theta$.

Goal: infer θ from data.

Inference gives posterior $\theta|X_1,\ldots,X_n$.

 p_{θ} distributions over \mathbb{X} indexed by $\theta \in \Theta$.

Goal: infer θ from data.

Inference gives posterior $\theta | X_1, \dots, X_n$.

 $\pi(\theta_1|X_1,\ldots,X_n) \ll \pi(\theta_2|X_1,\ldots,X_n)$ p_{θ_1} p_{θ_2} \mathbb{X}

Remark: p_{θ} with $\theta \sim \pi$ is a random probability: $\mathbb{Q} = (\theta \mapsto p_{\theta}) \# \pi$.

Bayesian NonParametrics: define directly \mathbb{Q} (that is a random probability \tilde{P}) instead of p_{θ} and π .

Merging of opinions

Question. Different priors π^1, π^2 but same data X_1, \ldots, X_n .

Does the **distance** between the posteriors $\pi^1(\cdot|X_1,\ldots,X_n)$ and $\pi^2(\cdot|X_1,\ldots,X_n)$ converge to zero as $n\to+\infty$? At which rate in n?

Merging of opinions

Question. Different priors π^1, π^2 but same data X_1, \ldots, X_n .

Does the **distance** between the posteriors $\pi^1(\cdot|X_1,\ldots,X_n)$ and $\pi^2(\cdot|X_1,\ldots,X_n)$ converge to zero as $n\to+\infty$? At which rate in n?

In Bayesian Nonparametrics, need for a distance between laws of random probabilities.

Merging of opinions

1 - Why? Bayesian Nonparametric Statistics

2 - Wasserstein over Wasserstein and its sample complexity

3 - A new distance with a better sample complexity

Wasserstein over Wasserstein distance

 \mathbb{X} metric space, \mathcal{W} Wasserstein distance of order 1 on $\mathcal{P}(\mathbb{X})$.

Definition. If $\mathbb{Q}_1, \mathbb{Q}_2 \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, the "Wasserstein over Wasserstein" distance is:

$$\mathcal{W}_{\mathcal{W}}(\mathbb{Q}_1, \mathbb{Q}_2) = \inf_{\gamma \in \Gamma(\mathbb{Q}_1, \mathbb{Q}_2)} \mathbb{E}_{(\tilde{P}_1, \tilde{P}_2) \sim \gamma} \left[\mathcal{W}(\tilde{P}_1, \tilde{P}_2) \right].$$

Couplings between \mathbb{Q}_1 and \mathbb{Q}_2 ____

Wasserstein over Wasserstein distance

 \mathbb{X} metric space, \mathcal{W} Wasserstein distance of order 1 on $\mathcal{P}(\mathbb{X})$.

Definition. If $\mathbb{Q}_1, \mathbb{Q}_2 \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, the "Wasserstein over Wasserstein" distance is:

$$\mathcal{W}_{\mathcal{W}}(\mathbb{Q}_1, \mathbb{Q}_2) = \inf_{\gamma \in \Gamma(\mathbb{Q}_1, \mathbb{Q}_2)} \mathbb{E}_{(\tilde{P}_1, \tilde{P}_2) \sim \gamma} \left[\mathcal{W}(\tilde{P}_1, \tilde{P}_2) \right].$$

Couplings between \mathbb{Q}_1 and \mathbb{Q}_2 ___

Weak convergence over weak convergence

Theorem. If X is bounded, then $\mathcal{W}_{\mathcal{W}}$ metrizes the weak convergence over $\mathcal{P}(\mathcal{P}(X))$.

Sample complexity: reminder

- $P \in \mathcal{P}(\mathbb{X})$.
- $X_1, \ldots X_n \overset{\text{i.i.d.}}{\sim} P$, build $\tilde{P}_{(n)} = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$.

How close is $\tilde{P}_{(n)}$ from P?

Sample complexity: reminder

•
$$P \in \mathcal{P}(X)$$
.

•
$$X_1, \ldots X_n \overset{\text{i.i.d.}}{\sim} P$$
, build $\tilde{P}_{(n)} = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$.

How close is $\tilde{P}_{(n)}$ from P?

Theorem. If P is "d-dimensional", then:

$$\mathbb{E}\left[\mathcal{W}(\tilde{P}_{(n)}, \mathbf{P})\right] \times \begin{cases} n^{-1/2} & \text{if } d = 1, \\ n^{-1/2} \log(n) & \text{if } d = 2, \\ n^{-1/d} & \text{if } d \geq 3. \end{cases}$$

Sample complexity for Wasserstein over Wasserstein

- $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$. $P_1, \dots P_n \overset{\text{i.i.d.}}{\sim} \mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)} = \frac{1}{n} \sum_{i=1}^n \delta_{P_i}$.

Sample complexity for Wasserstein over Wasserstein

- $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$.
- $P_1,\ldots P_n\stackrel{\text{i.i.d.}}{\sim}\mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)}=rac{1}{n}\sum_{i=1}^n\delta_{P_i}$.

 $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$

Theorem. Take $\mathbb{X} \subset \mathbb{R}^d$ bounded. Then for any \mathbb{Q}

$$\mathbb{E}\left[\mathcal{W}_{\mathcal{W}}\left(\tilde{\mathbb{Q}}_{(n)}, \mathbb{Q}\right)\right] \leq C_{\mathbb{X}} \frac{\log(\log(n))}{\log(n)},$$

Sample complexity for Wasserstein over Wasserstein

- $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$.
- $P_1,\ldots P_n\stackrel{\text{i.i.d.}}{\sim}\mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)}=rac{1}{n}\sum_{i=1}^n\delta_{P_i}$.

 $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$

Theorem. Take $\mathbb{X} \subset \mathbb{R}^d$ bounded. Then for any \mathbb{Q}

$$\mathbb{E}\left[\mathcal{W}_{\mathcal{W}}\left(\tilde{\mathbb{Q}}_{(n)}, \mathbb{Q}\right)\right] \leq C_{\mathbb{X}} \frac{\log(\log(n))}{\log(n)},$$

and taking for $\mathbb Q$ a **Dirichlet process**, for any $\gamma>0$,

$$\mathbb{E}\left[\mathcal{W}_{\mathcal{W}}\left(\tilde{\mathbb{Q}}_{(n)}, \mathbb{Q}\right)\right] \geq \frac{c_{\gamma}}{n^{\gamma}}.$$

Parameters: base measure $P_0 \in \mathcal{P}(\mathbb{X})$ and concentration parameter $\alpha > 0$.

To draw \tilde{P} according to a Dirichlet process:

Parameters: base measure $P_0 \in \mathcal{P}(\mathbb{X})$ and concentration parameter $\alpha > 0$.

To draw \tilde{P} according to a Dirichlet process:

1. Draw
$$X_1, \ldots, X_n, \ldots \stackrel{\text{i.i.d.}}{\sim} P_0$$
.

Parameters: base measure $P_0 \in \mathcal{P}(\mathbb{X})$ and concentration parameter $\alpha > 0$.

To draw \tilde{P} according to a Dirichlet process:

1. Draw
$$X_1, \ldots, X_n, \ldots \stackrel{\text{i.i.d.}}{\sim} P_0$$
.

2. Draw independently weights J_1, \ldots, J_n, \ldots which sum to 1 (law depending on α).

3. Define
$$\tilde{P} = \sum_{n=1}^{+\infty} J_n \delta_{X_n}$$
.

Parameters: base measure $P_0 \in \mathcal{P}(\mathbb{X})$ and concentration parameter $\alpha > 0$.

To draw \tilde{P} according to a Dirichlet process:

1. Draw
$$X_1, \ldots, X_n, \ldots \overset{\text{i.i.d.}}{\sim} P_0$$
.

2. Draw independently weights J_1, \ldots, J_n, \ldots which sum to 1 (law depending on α).

3. Define
$$\tilde{P} = \sum_{n=1}^{+\infty} J_n \delta_{X_n}$$
.

Remark. If the support of P_0 is \mathbb{X} , the topological support of the Dirichlet process is $\mathcal{P}(\mathbb{X})$.

1 - Why? Bayesian Nonparametric Statistics

2 - Wasserstein over Wasserstein and its sample complexity

3 - A new distance with a better sample complexity

 $\mathbb{Q}_1, \mathbb{Q}_2 \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, recall:

$$\mathcal{W}_{\mathcal{W}}(\mathbb{Q}_{1},\mathbb{Q}_{2}) = \inf_{\boldsymbol{\gamma} \in \Gamma(\mathbb{Q}_{1},\mathbb{Q}_{2})} \sup_{\boldsymbol{f} \in \operatorname{Lip}_{1}(\mathbb{X})} \mathbb{E}_{(\tilde{P}_{1},\tilde{P}_{2}) \sim \boldsymbol{\gamma}} \left[\left| \int_{\mathbb{X}} \boldsymbol{f} \, d\tilde{P}_{1} - \int_{\mathbb{X}} \boldsymbol{f} \, d\tilde{P}_{2} \right| \right].$$

 $\mathbb{Q}_1, \mathbb{Q}_2 \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, recall:

$$\mathcal{W}_{\mathcal{W}}(\mathbb{Q}_{1},\mathbb{Q}_{2}) = \inf_{\substack{\boldsymbol{\gamma} \in \Gamma(\mathbb{Q}_{1},\mathbb{Q}_{2})}} \sup_{\boldsymbol{f} \in \operatorname{Lip}_{1}(\mathbb{X})} \mathbb{E}_{(\tilde{P}_{1},\tilde{P}_{2}) \sim \boldsymbol{\gamma}} \left[\left| \int_{\mathbb{X}} \boldsymbol{f} \, d\tilde{P}_{1} - \int_{\mathbb{X}} \boldsymbol{f} \, d\tilde{P}_{2} \right| \right].$$

Definition.

$$d_{\operatorname{Lip}}(\mathbb{Q}_{1},\mathbb{Q}_{2}) = \sup_{\boldsymbol{f} \in \operatorname{Lip}_{1}(\mathbb{X})} \inf_{\boldsymbol{\gamma} \in \Gamma(\mathbb{Q}_{1},\mathbb{Q}_{2})} \mathbb{E}_{(\tilde{P}_{1},\tilde{P}_{2}) \sim \boldsymbol{\gamma}} \left[\left| \int_{\mathbb{X}} \boldsymbol{f} \, d\tilde{P}_{1} - \int_{\mathbb{X}} \boldsymbol{f} \, d\tilde{P}_{2} \right| \right]$$

 $\mathbb{Q}_1, \mathbb{Q}_2 \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, recall:

$$\mathcal{W}_{\mathcal{W}}(\mathbb{Q}_{1},\mathbb{Q}_{2}) = \inf_{\substack{\boldsymbol{\gamma} \in \Gamma(\mathbb{Q}_{1},\mathbb{Q}_{2}) \\ \boldsymbol{\gamma} \in \Gamma(\mathbb{Q}_{1},\mathbb{Q}_{2})}} \sup_{\boldsymbol{f} \in \operatorname{Lip}_{1}(\mathbb{X})} \mathbb{E}_{(\tilde{P}_{1},\tilde{P}_{2}) \sim \boldsymbol{\gamma}} \left[\left| \int_{\mathbb{X}} \boldsymbol{f} \, \mathrm{d}\tilde{P}_{1} - \int_{\mathbb{X}} \boldsymbol{f} \, \mathrm{d}\tilde{P}_{2} \right| \right].$$

Definition.

$$d_{\operatorname{Lip}}(\mathbb{Q}_{1}, \mathbb{Q}_{2}) = \sup_{f \in \operatorname{Lip}_{1}(\mathbb{X})} \inf_{\boldsymbol{\gamma} \in \Gamma(\mathbb{Q}_{1}, \mathbb{Q}_{2})} \mathbb{E}_{(\tilde{P}_{1}, \tilde{P}_{2}) \sim \boldsymbol{\gamma}} \left[\left| \int_{\mathbb{X}} f \, d\tilde{P}_{1} - \int_{\mathbb{X}} f \, d\tilde{P}_{2} \right| \right]$$
$$= \sup_{f \in \operatorname{Lip}_{1}(\mathbb{X})} \mathcal{W} \left(\int_{\mathbb{X}} f \, d\tilde{P}_{1}, \int_{\mathbb{X}} f \, d\tilde{P}_{2} \right) \qquad \tilde{P}_{1} \sim \mathbb{Q}_{1}, \ \tilde{P}_{2} \sim \mathbb{Q}_{2}.$$

Idea. Project $\mathcal{P}(\mathbb{X})$ on \mathbb{R} via $P \mapsto \int f \, dP$ for $f \in \text{Lip}_1(\mathbb{X})$, then measure Wasserstein distance of projections.

Remark. Replace $\operatorname{Lip}_1(\mathbb{X})$ by \mathcal{F} class of function $f: \mathbb{X} \to \mathbb{R}$ generating an *Integral Probability Metric*. We call the distance **Hierarchical IPM**.

Definition.

$$d_{\operatorname{Lip}}(\mathbb{Q}_{1},\mathbb{Q}_{2}) = \sup_{f \in \operatorname{Lip}_{1}(\mathbb{X})} \inf_{\gamma \in \Gamma(\mathbb{Q}_{1},\mathbb{Q}_{2})} \mathbb{E}_{(\tilde{P}_{1},\tilde{P}_{2}) \sim \gamma} \left[\left| \int_{\mathbb{X}} f \, d\tilde{P}_{1} - \int_{\mathbb{X}} f \, d\tilde{P}_{2} \right| \right]$$

$$= \sup_{f \in \operatorname{Lip}_{1}(\mathbb{X})} \mathcal{V} \left(\int_{\mathbb{X}} f \, d\tilde{P}_{1}, \int_{\mathbb{X}} f \, d\tilde{P}_{2} \right) \qquad \tilde{P}_{1} \sim \mathbb{Q}_{1}, \ \tilde{P}_{2} \sim \mathbb{Q}_{2}.$$

Idea. Project $\mathcal{P}(\mathbb{X})$ on \mathbb{R} via $P\mapsto \int f\,\mathrm{d}P$ for $f\in\mathrm{Lip}_1(\mathbb{X})$, then measure Wasserstein distance of projections.

Properties of this new distance

Theorem. There holds $d_{\text{Lip}} \leq \mathcal{W}_{\mathcal{W}}$. If \mathbb{X} compact, d_{Lip} is a distance metrizing weak convergence over $\mathcal{P}(\mathcal{P}(\mathbb{X}))$.

Properties of this new distance

Theorem. There holds $d_{\text{Lip}} \leq \mathcal{W}_{\mathcal{W}}$.

If X compact, d_{Lip} is a distance metrizing weak convergence over $\mathcal{P}(\mathcal{P}(X))$.

Theorem (sample complexity).

- $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$ with \mathbb{X} bounded subset of \mathbb{R}^d .
- $P_1,\ldots P_n\stackrel{\text{i.i.d.}}{\sim}\mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)}=rac{1}{n}\sum_{i=1}^n\delta_{P_i}$.

Properties of this new distance

Theorem. There holds $d_{\mathrm{Lip}} \leq \mathcal{W}_{\mathcal{W}}$.

If X compact, d_{Lip} is a distance metrizing weak convergence over $\mathcal{P}(\mathcal{P}(X))$.

Theorem (sample complexity).

- $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$ with \mathbb{X} bounded subset of \mathbb{R}^d .
- $P_1, \ldots P_n \overset{\text{i.i.d.}}{\sim} \mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)} = \frac{1}{n} \sum_{i=1}^n \delta_{P_i}$.

$$\left\{egin{aligned} n & & & ext{if } d=1, \ \mathbb{E}\left[d_{ ext{Lip}}\left(ilde{\mathbb{Q}}_{(n)}, oldsymbol{\mathbb{Q}}
ight)
ight] \lesssim \left\{egin{aligned} n^{-1/2} \log(n) & & ext{if } d=2, \ n^{-1/d} & & ext{if } d \geq 3. \end{aligned}
ight.$$

A word on Numerics

$$\mathbb{Q} = \frac{1}{n} \sum_{i=1}^{n} \delta_{P_i} \text{ discrete}$$

$$P_n$$

A word on Numerics

$$\mathbb{Q} = \frac{1}{n} \sum_{i=1}^{n} \delta_{P_i}$$
 discrete

Each element of $\mathcal{P}(\mathcal{P}(\mathbb{X}))$ is stored as a $n \times m$ array of atoms (and weights).

A word on Numerics

$$\mathbb{Q} = \frac{1}{n} \sum_{i=1}^{n} \delta_{P_i} \text{ discrete}$$
 \vdots

Each element of $\mathcal{P}(\mathcal{P}(\mathbb{X}))$ is stored as a $n \times m$ array of atoms (and weights).

Computing d_{Lip} is finding the supremum of $f \mapsto \mathcal{W}(\int f \, d\tilde{P}_1, \int f \, d\tilde{P}_2)$ among $\text{Lip}_1(\mathbb{X})$.

Non convex, non concave. We propose a gradient ascent when $\mathbb{X} \subset \mathbb{R}$.

Thank you for your attention

