What distance to use between probabilities over probabilities? #### **Hugo Lavenant** **Bocconi University** Optimal Transport Cargese Workshop Cargèse (France), April 9, 2024 #### Joint work with Marta Catalano (Luiss University) Our article Hierarchical Integral Probability Metrics: A distance on random probability measures with low sample complexity is on arxiv! \mathbb{X} set (think subset of \mathbb{R}^d) \mathbb{X} set (think subset of \mathbb{R}^d) $\mathcal{P}(\mathbb{X})$ probability distributions over \mathbb{X} Typical element P \mathbb{X} set (think subset of \mathbb{R}^d) $\mathcal{P}(\mathbb{X})$ probability distributions over \mathbb{X} Typical element P $\mathcal{P}(\mathcal{P}(\mathbb{X}))$ probability distributions over $\mathcal{P}(\mathbb{X})$ Typical element \mathbb{Q} , or $\tilde{P}\sim\mathbb{Q}$ random probability \mathbb{X} set (think subset of \mathbb{R}^d) $\mathcal{P}(\mathbb{X})$ probability distributions over \mathbb{X} Typical element P $\mathcal{P}(\mathcal{P}(\mathbb{X}))$ probability distributions over $\mathcal{P}(\mathbb{X})$ Typical element \mathbb{Q} , or $\tilde{P}\sim\mathbb{Q}$ random probability What distance to put on the space $\mathcal{P}(\mathcal{P}(X))$? - \mathbb{X} set (think subset of \mathbb{R}^d) - $\mathcal{P}(\mathbb{X})$ probability distributions over \mathbb{X} Typical element P - $\mathcal{P}(\mathcal{P}(\mathbb{X}))$ probability distributions over $\mathcal{P}(\mathbb{X})$ Typical element \mathbb{Q} , or $\tilde{P}\sim\mathbb{Q}$ random probability What distance to put on the space $\mathcal{P}(\mathcal{P}(X))$? #### Desiderata: This talk - Metrizing weak topology. - Computation from samples: satistical and numerical complexity. - · Explicit formula, upper and lower bounds. # 1 - Why? Bayesian Nonparametric Statistics # 2 - Wasserstein over Wasserstein and its sample complexity 3 - A new distance with a better sample complexity # 2 - Wasserstein over Wasserstein and its sample complexity 3 - A new distance with a better sample complexity p_{θ} distributions over \mathbb{X} indexed by $\theta \in \Theta$. **Goal**: infer θ from data. p_{θ} distributions over \mathbb{X} indexed by $\theta \in \Theta$. **Goal:** infer θ from data. p_{θ} distributions over \mathbb{X} indexed by $\theta \in \Theta$. **Goal**: infer θ from data. Inference gives posterior $\theta|X_1,\ldots,X_n$. p_{θ} distributions over \mathbb{X} indexed by $\theta \in \Theta$. **Goal**: infer θ from data. Inference gives posterior $\theta | X_1, \dots, X_n$. $\pi(\theta_1|X_1,\ldots,X_n) \ll \pi(\theta_2|X_1,\ldots,X_n)$ p_{θ_1} p_{θ_2} \mathbb{X} **Remark:** p_{θ} with $\theta \sim \pi$ is a random probability: $\mathbb{Q} = (\theta \mapsto p_{\theta}) \# \pi$. **Bayesian NonParametrics**: define directly \mathbb{Q} (that is a random probability \tilde{P}) instead of p_{θ} and π . #### **Merging of opinions** **Question.** Different priors π^1, π^2 but same data X_1, \ldots, X_n . Does the **distance** between the posteriors $\pi^1(\cdot|X_1,\ldots,X_n)$ and $\pi^2(\cdot|X_1,\ldots,X_n)$ converge to zero as $n\to+\infty$? At which rate in n? ### **Merging of opinions** **Question.** Different priors π^1, π^2 but same data X_1, \ldots, X_n . Does the **distance** between the posteriors $\pi^1(\cdot|X_1,\ldots,X_n)$ and $\pi^2(\cdot|X_1,\ldots,X_n)$ converge to zero as $n\to+\infty$? At which rate in n? In Bayesian Nonparametrics, need for a distance between laws of random probabilities. #### **Merging of opinions** #### 1 - Why? Bayesian Nonparametric Statistics # 2 - Wasserstein over Wasserstein and its sample complexity # 3 - A new distance with a better sample complexity #### **Wasserstein over Wasserstein distance** \mathbb{X} metric space, \mathcal{W} Wasserstein distance of order 1 on $\mathcal{P}(\mathbb{X})$. **Definition**. If $\mathbb{Q}_1, \mathbb{Q}_2 \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, the "Wasserstein over Wasserstein" distance is: $$\mathcal{W}_{\mathcal{W}}(\mathbb{Q}_1, \mathbb{Q}_2) = \inf_{\gamma \in \Gamma(\mathbb{Q}_1, \mathbb{Q}_2)} \mathbb{E}_{(\tilde{P}_1, \tilde{P}_2) \sim \gamma} \left[\mathcal{W}(\tilde{P}_1, \tilde{P}_2) \right].$$ Couplings between \mathbb{Q}_1 and \mathbb{Q}_2 ____ #### Wasserstein over Wasserstein distance \mathbb{X} metric space, \mathcal{W} Wasserstein distance of order 1 on $\mathcal{P}(\mathbb{X})$. **Definition**. If $\mathbb{Q}_1, \mathbb{Q}_2 \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, the "Wasserstein over Wasserstein" distance is: $$\mathcal{W}_{\mathcal{W}}(\mathbb{Q}_1, \mathbb{Q}_2) = \inf_{\gamma \in \Gamma(\mathbb{Q}_1, \mathbb{Q}_2)} \mathbb{E}_{(\tilde{P}_1, \tilde{P}_2) \sim \gamma} \left[\mathcal{W}(\tilde{P}_1, \tilde{P}_2) \right].$$ Couplings between \mathbb{Q}_1 and \mathbb{Q}_2 ___ Weak convergence over weak convergence **Theorem**. If X is bounded, then $\mathcal{W}_{\mathcal{W}}$ metrizes the weak convergence over $\mathcal{P}(\mathcal{P}(X))$. #### Sample complexity: reminder - $P \in \mathcal{P}(\mathbb{X})$. - $X_1, \ldots X_n \overset{\text{i.i.d.}}{\sim} P$, build $\tilde{P}_{(n)} = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$. How close is $\tilde{P}_{(n)}$ from P? # Sample complexity: reminder • $$P \in \mathcal{P}(X)$$. • $$X_1, \ldots X_n \overset{\text{i.i.d.}}{\sim} P$$, build $\tilde{P}_{(n)} = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$. # How close is $\tilde{P}_{(n)}$ from P? **Theorem**. If P is "d-dimensional", then: $$\mathbb{E}\left[\mathcal{W}(\tilde{P}_{(n)}, \mathbf{P})\right] \times \begin{cases} n^{-1/2} & \text{if } d = 1, \\ n^{-1/2} \log(n) & \text{if } d = 2, \\ n^{-1/d} & \text{if } d \geq 3. \end{cases}$$ #### Sample complexity for Wasserstein over Wasserstein - $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$. $P_1, \dots P_n \overset{\text{i.i.d.}}{\sim} \mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)} = \frac{1}{n} \sum_{i=1}^n \delta_{P_i}$. # Sample complexity for Wasserstein over Wasserstein - $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$. - $P_1,\ldots P_n\stackrel{\text{i.i.d.}}{\sim}\mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)}= rac{1}{n}\sum_{i=1}^n\delta_{P_i}$. $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$ **Theorem**. Take $\mathbb{X} \subset \mathbb{R}^d$ bounded. Then for any \mathbb{Q} $$\mathbb{E}\left[\mathcal{W}_{\mathcal{W}}\left(\tilde{\mathbb{Q}}_{(n)}, \mathbb{Q}\right)\right] \leq C_{\mathbb{X}} \frac{\log(\log(n))}{\log(n)},$$ # Sample complexity for Wasserstein over Wasserstein - $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$. - $P_1,\ldots P_n\stackrel{\text{i.i.d.}}{\sim}\mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)}= rac{1}{n}\sum_{i=1}^n\delta_{P_i}$. $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$ **Theorem**. Take $\mathbb{X} \subset \mathbb{R}^d$ bounded. Then for any \mathbb{Q} $$\mathbb{E}\left[\mathcal{W}_{\mathcal{W}}\left(\tilde{\mathbb{Q}}_{(n)}, \mathbb{Q}\right)\right] \leq C_{\mathbb{X}} \frac{\log(\log(n))}{\log(n)},$$ and taking for $\mathbb Q$ a **Dirichlet process**, for any $\gamma>0$, $$\mathbb{E}\left[\mathcal{W}_{\mathcal{W}}\left(\tilde{\mathbb{Q}}_{(n)}, \mathbb{Q}\right)\right] \geq \frac{c_{\gamma}}{n^{\gamma}}.$$ **Parameters**: base measure $P_0 \in \mathcal{P}(\mathbb{X})$ and concentration parameter $\alpha > 0$. To draw \tilde{P} according to a Dirichlet process: **Parameters**: base measure $P_0 \in \mathcal{P}(\mathbb{X})$ and concentration parameter $\alpha > 0$. To draw \tilde{P} according to a Dirichlet process: 1. Draw $$X_1, \ldots, X_n, \ldots \stackrel{\text{i.i.d.}}{\sim} P_0$$. **Parameters**: base measure $P_0 \in \mathcal{P}(\mathbb{X})$ and concentration parameter $\alpha > 0$. To draw \tilde{P} according to a Dirichlet process: 1. Draw $$X_1, \ldots, X_n, \ldots \stackrel{\text{i.i.d.}}{\sim} P_0$$. 2. Draw independently weights J_1, \ldots, J_n, \ldots which sum to 1 (law depending on α). 3. Define $$\tilde{P} = \sum_{n=1}^{+\infty} J_n \delta_{X_n}$$. **Parameters**: base measure $P_0 \in \mathcal{P}(\mathbb{X})$ and concentration parameter $\alpha > 0$. To draw \tilde{P} according to a Dirichlet process: 1. Draw $$X_1, \ldots, X_n, \ldots \overset{\text{i.i.d.}}{\sim} P_0$$. 2. Draw independently weights J_1, \ldots, J_n, \ldots which sum to 1 (law depending on α). 3. Define $$\tilde{P} = \sum_{n=1}^{+\infty} J_n \delta_{X_n}$$. **Remark**. If the support of P_0 is \mathbb{X} , the topological support of the Dirichlet process is $\mathcal{P}(\mathbb{X})$. ### 1 - Why? Bayesian Nonparametric Statistics # 2 - Wasserstein over Wasserstein and its sample complexity # 3 - A new distance with a better sample complexity $\mathbb{Q}_1, \mathbb{Q}_2 \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, recall: $$\mathcal{W}_{\mathcal{W}}(\mathbb{Q}_{1},\mathbb{Q}_{2}) = \inf_{\boldsymbol{\gamma} \in \Gamma(\mathbb{Q}_{1},\mathbb{Q}_{2})} \sup_{\boldsymbol{f} \in \operatorname{Lip}_{1}(\mathbb{X})} \mathbb{E}_{(\tilde{P}_{1},\tilde{P}_{2}) \sim \boldsymbol{\gamma}} \left[\left| \int_{\mathbb{X}} \boldsymbol{f} \, d\tilde{P}_{1} - \int_{\mathbb{X}} \boldsymbol{f} \, d\tilde{P}_{2} \right| \right].$$ $\mathbb{Q}_1, \mathbb{Q}_2 \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, recall: $$\mathcal{W}_{\mathcal{W}}(\mathbb{Q}_{1},\mathbb{Q}_{2}) = \inf_{\substack{\boldsymbol{\gamma} \in \Gamma(\mathbb{Q}_{1},\mathbb{Q}_{2})}} \sup_{\boldsymbol{f} \in \operatorname{Lip}_{1}(\mathbb{X})} \mathbb{E}_{(\tilde{P}_{1},\tilde{P}_{2}) \sim \boldsymbol{\gamma}} \left[\left| \int_{\mathbb{X}} \boldsymbol{f} \, d\tilde{P}_{1} - \int_{\mathbb{X}} \boldsymbol{f} \, d\tilde{P}_{2} \right| \right].$$ #### Definition. $$d_{\operatorname{Lip}}(\mathbb{Q}_{1},\mathbb{Q}_{2}) = \sup_{\boldsymbol{f} \in \operatorname{Lip}_{1}(\mathbb{X})} \inf_{\boldsymbol{\gamma} \in \Gamma(\mathbb{Q}_{1},\mathbb{Q}_{2})} \mathbb{E}_{(\tilde{P}_{1},\tilde{P}_{2}) \sim \boldsymbol{\gamma}} \left[\left| \int_{\mathbb{X}} \boldsymbol{f} \, d\tilde{P}_{1} - \int_{\mathbb{X}} \boldsymbol{f} \, d\tilde{P}_{2} \right| \right]$$ $\mathbb{Q}_1, \mathbb{Q}_2 \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, recall: $$\mathcal{W}_{\mathcal{W}}(\mathbb{Q}_{1},\mathbb{Q}_{2}) = \inf_{\substack{\boldsymbol{\gamma} \in \Gamma(\mathbb{Q}_{1},\mathbb{Q}_{2}) \\ \boldsymbol{\gamma} \in \Gamma(\mathbb{Q}_{1},\mathbb{Q}_{2})}} \sup_{\boldsymbol{f} \in \operatorname{Lip}_{1}(\mathbb{X})} \mathbb{E}_{(\tilde{P}_{1},\tilde{P}_{2}) \sim \boldsymbol{\gamma}} \left[\left| \int_{\mathbb{X}} \boldsymbol{f} \, \mathrm{d}\tilde{P}_{1} - \int_{\mathbb{X}} \boldsymbol{f} \, \mathrm{d}\tilde{P}_{2} \right| \right].$$ #### **Definition.** $$d_{\operatorname{Lip}}(\mathbb{Q}_{1}, \mathbb{Q}_{2}) = \sup_{f \in \operatorname{Lip}_{1}(\mathbb{X})} \inf_{\boldsymbol{\gamma} \in \Gamma(\mathbb{Q}_{1}, \mathbb{Q}_{2})} \mathbb{E}_{(\tilde{P}_{1}, \tilde{P}_{2}) \sim \boldsymbol{\gamma}} \left[\left| \int_{\mathbb{X}} f \, d\tilde{P}_{1} - \int_{\mathbb{X}} f \, d\tilde{P}_{2} \right| \right]$$ $$= \sup_{f \in \operatorname{Lip}_{1}(\mathbb{X})} \mathcal{W} \left(\int_{\mathbb{X}} f \, d\tilde{P}_{1}, \int_{\mathbb{X}} f \, d\tilde{P}_{2} \right) \qquad \tilde{P}_{1} \sim \mathbb{Q}_{1}, \ \tilde{P}_{2} \sim \mathbb{Q}_{2}.$$ **Idea**. Project $\mathcal{P}(\mathbb{X})$ on \mathbb{R} via $P \mapsto \int f \, dP$ for $f \in \text{Lip}_1(\mathbb{X})$, then measure Wasserstein distance of projections. **Remark.** Replace $\operatorname{Lip}_1(\mathbb{X})$ by \mathcal{F} class of function $f: \mathbb{X} \to \mathbb{R}$ generating an *Integral Probability Metric*. We call the distance **Hierarchical IPM**. # Definition. $$d_{\operatorname{Lip}}(\mathbb{Q}_{1},\mathbb{Q}_{2}) = \sup_{f \in \operatorname{Lip}_{1}(\mathbb{X})} \inf_{\gamma \in \Gamma(\mathbb{Q}_{1},\mathbb{Q}_{2})} \mathbb{E}_{(\tilde{P}_{1},\tilde{P}_{2}) \sim \gamma} \left[\left| \int_{\mathbb{X}} f \, d\tilde{P}_{1} - \int_{\mathbb{X}} f \, d\tilde{P}_{2} \right| \right]$$ $$= \sup_{f \in \operatorname{Lip}_{1}(\mathbb{X})} \mathcal{V} \left(\int_{\mathbb{X}} f \, d\tilde{P}_{1}, \int_{\mathbb{X}} f \, d\tilde{P}_{2} \right) \qquad \tilde{P}_{1} \sim \mathbb{Q}_{1}, \ \tilde{P}_{2} \sim \mathbb{Q}_{2}.$$ **Idea**. Project $\mathcal{P}(\mathbb{X})$ on \mathbb{R} via $P\mapsto \int f\,\mathrm{d}P$ for $f\in\mathrm{Lip}_1(\mathbb{X})$, then measure Wasserstein distance of projections. #### **Properties of this new distance** **Theorem**. There holds $d_{\text{Lip}} \leq \mathcal{W}_{\mathcal{W}}$. If \mathbb{X} compact, d_{Lip} is a distance metrizing weak convergence over $\mathcal{P}(\mathcal{P}(\mathbb{X}))$. #### **Properties of this new distance** **Theorem**. There holds $d_{\text{Lip}} \leq \mathcal{W}_{\mathcal{W}}$. If X compact, d_{Lip} is a distance metrizing weak convergence over $\mathcal{P}(\mathcal{P}(X))$. #### Theorem (sample complexity). - $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$ with \mathbb{X} bounded subset of \mathbb{R}^d . - $P_1,\ldots P_n\stackrel{\text{i.i.d.}}{\sim}\mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)}= rac{1}{n}\sum_{i=1}^n\delta_{P_i}$. ### **Properties of this new distance** **Theorem**. There holds $d_{\mathrm{Lip}} \leq \mathcal{W}_{\mathcal{W}}$. If X compact, d_{Lip} is a distance metrizing weak convergence over $\mathcal{P}(\mathcal{P}(X))$. ### Theorem (sample complexity). - $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$ with \mathbb{X} bounded subset of \mathbb{R}^d . - $P_1, \ldots P_n \overset{\text{i.i.d.}}{\sim} \mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)} = \frac{1}{n} \sum_{i=1}^n \delta_{P_i}$. $$\left\{egin{aligned} n & & & ext{if } d=1, \ \mathbb{E}\left[d_{ ext{Lip}}\left(ilde{\mathbb{Q}}_{(n)}, oldsymbol{\mathbb{Q}} ight) ight] \lesssim \left\{egin{aligned} n^{-1/2} \log(n) & & ext{if } d=2, \ n^{-1/d} & & ext{if } d \geq 3. \end{aligned} ight.$$ #### **A word on Numerics** $$\mathbb{Q} = \frac{1}{n} \sum_{i=1}^{n} \delta_{P_i} \text{ discrete}$$ $$P_n$$ #### **A word on Numerics** $$\mathbb{Q} = \frac{1}{n} \sum_{i=1}^{n} \delta_{P_i}$$ discrete Each element of $\mathcal{P}(\mathcal{P}(\mathbb{X}))$ is stored as a $n \times m$ array of atoms (and weights). #### **A word on Numerics** $$\mathbb{Q} = \frac{1}{n} \sum_{i=1}^{n} \delta_{P_i} \text{ discrete}$$ \vdots Each element of $\mathcal{P}(\mathcal{P}(\mathbb{X}))$ is stored as a $n \times m$ array of atoms (and weights). Computing d_{Lip} is finding the supremum of $f \mapsto \mathcal{W}(\int f \, d\tilde{P}_1, \int f \, d\tilde{P}_2)$ among $\text{Lip}_1(\mathbb{X})$. **Non convex, non concave**. We propose a gradient ascent when $\mathbb{X} \subset \mathbb{R}$. # Thank you for your attention