What distance to use between probabilities over probabilities?

Hugo Lavenant

Bocconi University

Optimal Transport Cargese Workshop
Cargèse (France), April 9, 2024

Joint work with

Our article Hierarchical Integral Probability Metrics: A distance on random probability measures with low sample complexity is on arxiv!

Probabilities over Probabilities

\mathbb{X} set (think subset of \mathbb{R}^{d})

Probabilities over Probabilities

\mathbb{X} set (think subset of \mathbb{R}^{d})
$\mathcal{P}(\mathbb{X})$ probability distributions over \mathbb{X}
Typical element P

Probabilities over Probabilities

\mathbb{X} set (think subset of \mathbb{R}^{d})
$\mathcal{P}(\mathbb{X})$ probability distributions over \mathbb{X}
Typical element P
$\mathcal{P}(\mathcal{P}(\mathbb{X}))$ probability distributions over $\mathcal{P}(\mathbb{X})$
Typical element \mathbb{Q}, or $\tilde{P} \sim \mathbb{Q}$ random probability

Probabilities over Probabilities

\mathbb{X} set (think subset of \mathbb{R}^{d})
$\mathcal{P}(\mathbb{X})$ probability distributions over \mathbb{X}

$$
\text { Typical element } P
$$

$\mathcal{P}(\mathcal{P}(\mathbb{X}))$ probability distributions over $\mathcal{P}(\mathbb{X})$
Typical element \mathbb{Q}, or $\tilde{P} \sim \mathbb{Q}$ random probability

What distance to put on the space $\mathcal{P}(\mathcal{P}(\mathbb{X}))$?

Probabilities over Probabilities

$$
\left.\mathbb{X} \text { set (think subset of } \mathbb{R}^{d}\right)
$$

$\mathcal{P}(\mathbb{X})$ probability distributions over \mathbb{X}

Typical element P

$\mathcal{P}(\mathcal{P}(\mathbb{X}))$ probability distributions over $\mathcal{P}(\mathbb{X})$
Typical element \mathbb{Q}, or $\tilde{P} \sim \mathbb{Q}$ random probability

What distance to put on the space $\mathcal{P}(\mathcal{P}(\mathbb{X}))$?
Desiderata:

- Metrizing weak topology.
- Computation from samples: satistical and numerical complexity.
- Explicit formula, upper and lower bounds.

2 - Wasserstein over Wasserstein and its sample complexity

3 - A new distance with a better sample complexity

2 - Wasserstein over Wasserstein and its sample complexity

3-A new distance with a better sample complexity

Bayesian (Nonparametric) Statistics

p_{θ} distributions over \mathbb{X} indexed by $\theta \in \Theta$. Goal: infer θ from data.

Bayesian (Nonparametric) Statistics

p_{θ} distributions over \mathbb{X} indexed by $\theta \in \Theta$. Goal: infer θ from data.

Bayesian (Nonparametric) Statistics

p_{θ} distributions over \mathbb{X} indexed by $\theta \in \Theta$. Goal: infer θ from data.
$\underset{ }{\text { data in } \mathbb{X}} X_{1}, \ldots, X_{n} \mid \theta \stackrel{\text { i.i.d. }}{\sim} p_{\theta}$

$$
\pi\left(\theta_{1} \mid X_{1}, \ldots, X_{n}\right) \ll \pi\left(\theta_{2} \mid X_{1}, \ldots, X_{n}\right)
$$

Inference gives posterior $\theta \mid X_{1}, \ldots, X_{n}$.

Bayesian (Nonparametric) Statistics

p_{θ} distributions over \mathbb{X} indexed by $\theta \in \Theta$. Goal: infer θ from data.

$$
\theta \sim \pi
$$

data in \mathbb{X}

$$
\neg X_{1}, \ldots, X_{n} \mid \theta \stackrel{\text { i.i.d. }}{\sim} p_{\theta}
$$

$$
\pi\left(\theta_{1} \mid X_{1}, \ldots, X_{n}\right) \ll \pi\left(\theta_{2} \mid X_{1}, \ldots, X_{n}\right)
$$

Inference gives posterior $\theta \mid X_{1}, \ldots, X_{n}$.

Remark: p_{θ} with $\theta \sim \pi$ is a random probability: $\mathbb{Q}=\left(\theta \mapsto p_{\theta}\right) \# \pi$.
Bayesian NonParametrics: define directly \mathbb{Q} (that is a random probability \tilde{P}) instead of p_{θ} and π.

Merging of opinions

Question. Different priors π^{1}, π^{2} but same data X_{1}, \ldots, X_{n}. Does the distance between the posteriors $\pi^{1}\left(\cdot \mid X_{1}, \ldots, X_{n}\right)$ and $\pi^{2}\left(\cdot \mid X_{1}, \ldots, X_{n}\right)$ converge to zero as $n \rightarrow+\infty$? At which rate in n ?

Merging of opinions

Question. Different priors π^{1}, π^{2} but same data X_{1}, \ldots, X_{n}. Does the distance between the posteriors $\pi^{1}\left(\cdot \mid X_{1}, \ldots, X_{n}\right)$ and $\pi^{2}\left(\cdot \mid X_{1}, \ldots, X_{n}\right)$ converge to zero as $n \rightarrow+\infty$? At which rate in n ?

In Bayesian Nonparametrics, need for a distance between laws of random probabilities.

Merging of opinions

1 - Why? Bayesian Nonparametric Statistics

2 - Wasserstein over Wasserstein and its sample complexity

3-A new distance with a better sample complexity

Wasserstein over Wasserstein distance

\mathbb{X} metric space, \mathcal{W} Wasserstein distance of order 1 on $\mathcal{P}(\mathbb{X})$.

Definition. If $\mathbb{Q}_{1}, \mathbb{Q}_{2} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, the "Wasserstein over Wasserstein" distance is:

$$
\mathcal{W}_{\mathcal{W}}\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)=\inf _{\gamma \in \Gamma\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)} \mathbb{E}_{\left(\tilde{P}_{1}, \tilde{P}_{2}\right) \sim \gamma}\left[\mathcal{W}\left(\tilde{P}_{1}, \tilde{P}_{2}\right)\right] .
$$

Couplings between \mathbb{Q}_{1} and \mathbb{Q}_{2}

Wasserstein over Wasserstein distance

\mathbb{X} metric space, \mathcal{W} Wasserstein distance of order 1 on $\mathcal{P}(\mathbb{X})$.

Definition. If $\mathbb{Q}_{1}, \mathbb{Q}_{2} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, the "Wasserstein over Wasserstein" distance is:

$$
\mathcal{W}_{\mathcal{W}}\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)=\inf _{\gamma \in \Gamma\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)} \mathbb{E}_{\left(\tilde{P}_{1}, \tilde{P}_{2}\right) \sim \gamma}\left[\mathcal{W}\left(\tilde{P}_{1}, \tilde{P}_{2}\right)\right] .
$$

Couplings between \mathbb{Q}_{1} and \mathbb{Q}_{2}
Weak convergence over weak convergence
Theorem. If \mathbb{X} is bounded, then $\mathcal{W}_{\mathcal{W}}$ metrizes the weak convergence over $\mathcal{P}(\mathcal{P}(\mathbb{X}))$.

Sample complexity: reminder

- $P \in \mathcal{P}(\mathbb{X})$.
- $X_{1}, \ldots X_{n} \stackrel{\text { i.i.d. }}{\sim} P$, build $\tilde{P}_{(n)}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$.

How close is $\tilde{P}_{(n)}$ from P ?

Sample complexity: reminder

- $P \in \mathcal{P}(\mathbb{X})$.
- $X_{1}, \ldots X_{n} \stackrel{\text { i.i.d. }}{\sim} P$, build $\tilde{P}_{(n)}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$.

How close is $\tilde{P}_{(n)}$ from P ?

Theorem. If P is " d-dimensional", then:

$$
\mathbb{E}\left[\mathcal{W}\left(\tilde{P}_{(n)}, P\right)\right] \asymp \begin{cases}n^{-1 / 2} & \text { if } d=1 \\ n^{-1 / 2} \log (n) & \text { if } d=2 \\ n^{-1 / d} & \text { if } d \geq 3\end{cases}
$$

Sample complexity for Wasserstein over Wasserstein

- $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$.
- $P_{1}, \ldots P_{n} \stackrel{\text { i.i.d. }}{\sim} \mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)}=\frac{1}{n} \sum_{i=1}^{n} \delta_{P_{i}}$.

Sample complexity for Wasserstein over Wasserstein

- $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$.
- $P_{1}, \ldots P_{n} \stackrel{\text { i.i.d. }}{\sim} \mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)}=\frac{1}{n} \sum_{i=1}^{n} \delta_{P_{i}}$.

Theorem. Take $\mathbb{X} \subset \mathbb{R}^{d}$ bounded. Then for any \mathbb{Q}

$$
\mathbb{E}\left[\mathcal{W}_{\mathcal{W}}\left(\tilde{\mathbb{Q}}_{(n)}, \mathbb{Q}\right)\right] \leq C_{\mathbb{X}} \frac{\log (\log (n))}{\log (n)},
$$

Sample complexity for Wasserstein over Wasserstein

- $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$.

$$
P_{i} \in \mathcal{P}(\mathbb{X}) \quad \mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))
$$

- $P_{1}, \ldots P_{n} \stackrel{\text { i.i.d. }}{\sim} \mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)}=\frac{1}{n} \sum_{i=1}^{n} \delta_{P_{i}}$.

Theorem. Take $\mathbb{X} \subset \mathbb{R}^{d}$ bounded. Then for any \mathbb{Q}

$$
\mathbb{E}\left[\mathcal{W}_{\mathcal{W}}\left(\tilde{\mathbb{Q}}_{(n)}, \mathbb{Q}\right)\right] \leq C_{\mathbb{X}} \frac{\log (\log (n))}{\log (n)},
$$

and taking for \mathbb{Q} a Dirichlet process, for any $\gamma>0$,

$$
\mathbb{E}\left[\mathcal{W}_{\mathcal{W}}\left(\tilde{\mathbb{Q}}_{(n)}, \mathbb{Q}\right)\right] \geq \frac{c_{\gamma}}{n^{\gamma}} .
$$

What is this Dirichlet process giving a lower bound?

Parameters: base measure $P_{0} \in \mathcal{P}(\mathbb{X})$ and concentration parameter $\alpha>0$.
To draw \tilde{P} according to a Dirichlet process:

What is this Dirichlet process giving a lower bound?

Parameters: base measure $P_{0} \in \mathcal{P}(\mathbb{X})$ and concentration parameter $\alpha>0$.
To draw \tilde{P} according to a Dirichlet process:

1. Draw $X_{1}, \ldots, X_{n}, \ldots \stackrel{\text { i.i.d. }}{\sim} P_{0}$.

What is this Dirichlet process giving a lower bound?

Parameters: base measure $P_{0} \in \mathcal{P}(\mathbb{X})$ and concentration parameter $\alpha>0$.
To draw \tilde{P} according to a Dirichlet process:

1. Draw $X_{1}, \ldots, X_{n}, \ldots \stackrel{\text { i.i.d. }}{\sim} P_{0}$.
2. Draw independently weights $J_{1}, \ldots, J_{n}, \ldots$ which sum to 1 (law depending on α).
3. Define $\tilde{P}=\sum_{n=1}^{+\infty} J_{n} \delta_{X_{n}}$.

What is this Dirichlet process giving a lower bound?

Parameters: base measure $P_{0} \in \mathcal{P}(\mathbb{X})$ and concentration parameter $\alpha>0$.
To draw \tilde{P} according to a Dirichlet process:

1. Draw $X_{1}, \ldots, X_{n}, \ldots \stackrel{\text { i.i.d. }}{\sim} P_{0}$.
2. Draw independently weights $J_{1}, \ldots, J_{n}, \ldots$ which sum to 1 (law depending on α).
3. Define $\tilde{P}=\sum_{n=1}^{+\infty} J_{n} \delta_{X_{n}}$.

Remark. If the support of P_{0} is \mathbb{X}, the topological support of the Dirichlet process is $\mathcal{P}(\mathbb{X})$.

2 - Wasserstein over Wasserstein and its sample complexity

A new distance

$\mathbb{Q}_{1}, \mathbb{Q}_{2} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, recall:

$$
\mathcal{W}_{\mathcal{W}}\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)=\inf _{\gamma \in \Gamma\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)} \sup _{f \in \operatorname{Lip}_{1}(\mathbb{X})} \mathbb{E}_{\left(\tilde{P}_{1}, \tilde{P}_{2}\right) \sim \gamma}\left[\left|\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{1}-\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{2}\right|\right] .
$$

A new distance

$\mathbb{Q}_{1}, \mathbb{Q}_{2} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, recall:

$$
\mathcal{W}_{\mathcal{W}}\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)=\inf _{\gamma \in \Gamma\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)} \sup _{f \in \operatorname{Lip}_{1}(\mathbb{X})} \mathbb{E}_{\left(\tilde{P}_{1}, \tilde{P}_{2}\right) \sim \gamma}\left[\left|\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{1}-\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{2}\right|\right] .
$$

Definition.

$$
d_{\mathrm{Lip}}\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)=\sup _{f \in \operatorname{Lip}_{1}(\mathbb{X})} \inf _{\gamma \in \Gamma\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)} \mathbb{E}_{\left(\tilde{P}_{1}, \tilde{P}_{2}\right) \sim \gamma}\left[\left|\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{1}-\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{2}\right|\right]
$$

A new distance

$\mathbb{Q}_{1}, \mathbb{Q}_{2} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$, recall:

$$
\mathcal{W}_{\mathcal{W}}\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)=\inf _{\gamma \in \Gamma\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)} \sup _{f \in \operatorname{Lip}_{1}(\mathbb{X})} \mathbb{E}_{\left(\tilde{P}_{1}, \tilde{P}_{2}\right) \sim \gamma}\left[\left|\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{1}-\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{2}\right|\right] .
$$

Definition.

$$
\begin{aligned}
d_{\operatorname{Lip}}\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right) & =\sup _{f \in \operatorname{Lip}_{1}(\mathbb{X})} \inf _{\gamma \in \Gamma\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)} \mathbb{E}_{\left(\tilde{P}_{1}, \tilde{P}_{2}\right) \sim \gamma}\left[\left|\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{1}-\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{2}\right|\right] \\
& =\sup _{f \in \operatorname{Lip}_{1}(\mathbb{X})} \mathcal{W}\left(\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{1}, \int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{2}\right) \quad \tilde{P}_{1} \sim \mathbb{Q}_{1}, \tilde{P}_{2} \sim \mathbb{Q}_{2} .
\end{aligned}
$$

Idea. Project $\mathcal{P}(\mathbb{X})$ on \mathbb{R} via $P \mapsto \int f \mathrm{~d} P$ for $f \in \operatorname{Lip}_{1}(\mathbb{X})$, then measure Wasserstein distance of projections.

A new distance

Remark. Replace $\operatorname{Lip}_{1}(\mathbb{X})$ by \mathcal{F} class of function $f: \mathbb{X} \rightarrow \mathbb{R}$ generating an Integral Probability Metric. We call the distance Hierarchical IPM.

```
Definition.
\[
\begin{aligned}
& \text { Definition. } \\
& d_{\text {Lip }}\left(\mathbb{Q}_{1}, \mathbb{Q}_{2}\right)\left.=\inf _{\substack{\left.f \in \sup _{1}(\mathbb{X}) \hat{j}\right) \in \Gamma\left(\mathbb{Q}_{1}, \mathscr{L}_{2}\right)}} \mathbb{E}_{\left(\tilde{P}_{1}, \tilde{P}_{2}\right) \sim \gamma}\left[\left|\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{1}-\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{2}\right|\right]\right) \\
&\left.=\underset{\substack{f \in \operatorname{Lip}_{1}(\mathbb{X})}}{ }\left(\int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{1}, \int_{\mathbb{X}} f \mathrm{~d} \tilde{P}_{2}\right) \quad \tilde{P}_{1} \sim \mathbb{Q}_{1}, \tilde{P}_{2}\right) \sim \mathbb{Q}_{2} .
\end{aligned}
\]
```

Idea. Project $\mathcal{P}(\mathbb{X})$ on \mathbb{R} via $P \mapsto \int f \mathrm{~d} P$ for $f \in \operatorname{Lip}_{1}(\mathbb{X})$, then measure Wasserstein distance of projections.

Properties of this new distance

Theorem. There holds $d_{\text {Lip }} \leq \mathcal{W}_{\mathcal{W}}$. If \mathbb{X} compact, $d_{\text {Lip }}$ is a distance metrizing weak convergence over $\mathcal{P}(\mathcal{P}(\mathbb{X}))$.

Properties of this new distance

Theorem. There holds $d_{\text {Lip }} \leq \mathcal{W}_{\mathcal{W}}$.
If \mathbb{X} compact, $d_{\text {Lip }}$ is a distance metrizing weak convergence over $\mathcal{P}(\mathcal{P}(\mathbb{X}))$.

Theorem (sample complexity).

- $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$ with \mathbb{X} bounded subset of \mathbb{R}^{d}.
- $P_{1}, \ldots P_{n} \stackrel{\text { i.i.d. }}{\sim} \mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)}=\frac{1}{n} \sum_{i=1}^{n} \delta_{P_{i}}$.

Properties of this new distance

Theorem. There holds $d_{\text {Lip }} \leq \mathcal{W}_{\mathcal{W}}$.
If \mathbb{X} compact, $d_{\text {Lip }}$ is a distance metrizing weak convergence over $\mathcal{P}(\mathcal{P}(\mathbb{X}))$.

Theorem (sample complexity).

- $\mathbb{Q} \in \mathcal{P}(\mathcal{P}(\mathbb{X}))$ with \mathbb{X} bounded subset of \mathbb{R}^{d}.
- $P_{1}, \ldots P_{n} \stackrel{\text { i.i.d. }}{\sim} \mathbb{Q}$, build $\tilde{\mathbb{Q}}_{(n)}=\frac{1}{n} \sum_{i=1}^{n} \delta_{P_{i}}$.

Then

$$
\mathbb{E}\left[d_{\text {Lip }}\left(\tilde{\mathbb{Q}}_{(n)}, \mathbb{Q}\right)\right] \lesssim \begin{cases}n^{-1 / 2} & \text { if } d=1 \\ n^{-1 / 2} \log (n) & \text { if } d=2, \\ n^{-1 / d} & \text { if } d \geq 3\end{cases}
$$

$$
d\left(\tilde{\mathbb{Q}}_{(n)}, \tilde{\mathbb{Q}}_{(n)}^{\prime}\right)
$$

A word on Numerics

$\mathbb{Q}=\frac{1}{n} \sum_{i=1}^{n} \delta_{P_{i}}$ discrete

A word on Numerics

$\mathbb{Q}=\frac{1}{n} \sum_{i=1}^{n} \delta_{P_{i}}$ discrete

Each element of $\mathcal{P}(\mathcal{P}(\mathbb{X}))$ is stored as a $n \times m$ array of atoms (and weights).

A word on Numerics

$\mathbb{Q}=\frac{1}{n} \sum_{i=1}^{n} \delta_{P_{i}}$ discrete
P_{1}

$\rightsquigarrow P_{1}=\frac{1}{m} \sum_{j=1}^{m} \delta_{X_{1, j}}$ discrete

$$
\rightsquigarrow P_{n}=\frac{1}{m} \sum_{j=1}^{m} \delta_{X_{n, j}} \text { discrete }
$$

Each element of $\mathcal{P}(\mathcal{P}(\mathbb{X}))$ is stored as a $n \times m$ array of atoms (and weights).
Computing $d_{\text {Lip }}$ is finding the supremum of $f \mapsto \mathcal{W}\left(\int f \mathrm{~d} \tilde{P}_{1}, \int f \mathrm{~d} \tilde{P}_{2}\right)$ among $\operatorname{Lip}_{1}(\mathbb{X})$.

Non convex, non concave. We propose a gradient ascent when $\mathbb{X} \subset \mathbb{R}$.

Thank you for your attention

