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Joint work with

{5

Our article Hierarchical Integral Probability Metrics: A distance on
random probability measures with low sample complexity is on arxiv!
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Probabilities over Probabilities

X set (think subset of R¢)

P(X) probability distributions over X

Typical element P

P(P (X)) probability distributions over P(X)

X

What distance to put on the space P(P(X))?

Desiderata:
« Metrizing weak topology.

Typical element @, or P ~ Q random probability

This talk

« Computation from samples: satistical and numerical complexity.

» Explicit formula, upper and lower bounds.
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Bayesian (Nonparametric) Statistics
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Bayesian (Nonparametric) Statistics

pp distributions over X indexed by 8 € ©. Equaly likely under

Goal: infer 6 from data. Do, Do,

prior in P(O)

(9N7T<—J

data in X i.i.d.

\_/Xla'“?Xn‘e ~ Do

<Al
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Bayesian (Nonparametric) Statistics

pg distributions over X indexed by 6 € ©. T(011X0, .. X)) < 70X, X))

Goal: infer 0 from data.

p91 p92
prior in P(O)
O~m ———
>
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Inference gives posterior 6| X+,..., X,,.
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Bayesian (Nonparametric) Statistics

pg distributions over X indexed by 6 € ©. T(011X0, .. X)) < 70X, X))

Goal: infer 0 from data.

p91 p92
prior in P(O)
O~m ———
>
X
Inference gives posterior 6| X+,..., X,,.

Remark: py with 6 ~ 7 Is a random probability: Q = (0 — pg)#.

Bayesian NonParametrics: define directly Q (that is a random probability P)
Instead of py and . 5/16



Merging of opinions

Question. Different priors 7!, 7 but same data X, ..., X,.

Does the distance between the posteriors 7' (-|X;,..., X,,) and
(-] Xq,...,X,) converge to zero as n — +o0o? At which rate in n?

Blackwell & Dubins (1962). Merging of opinions with increasing information.
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Question. Different priors 7!, 7 but same data X, ..., X,.

Does the distance between the posteriors 7' (-|X;,..., X,,) and
(-] Xq,...,X,) converge to zero as n — +o0o? At which rate in n?

In Bayesian Nonparametrics, need for a distance between laws of random
probabilities.

Blackwell & Dubins (1962). Merging of opinions with increasing information.
Catalano & Lavenant (2023). Merging Rate of Opinions via Optimal Transport on Random Measures. 6/1 6



Merging of opinions

QueSti Merging Rate of Opinions via
Optimal Transport on Random Measures
Does t ind
5 Marta Catalano .
v (|X T LUISS e In ’n7

Joint work with Hugo Lavenant (Bocconi University)

In Bayesian| | | frandom
probabilitie

More about this with Marta in a few minutes!

Blackwell & Dubins (1962). Merging of opinions with increasing information.
Catalano & Lavenant (2023). Merging Rate of Opinions via Optimal Transport on Random Measures. 6/16
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Wasserstein over Wasserstein distance

X metric space, YW Wasserstein distance of order 1 on P(X).

Definition. If Q;, Q; € P(P(X)), the “Wasserstein over Wasserstein”
distance is:

Q)= inf E 5 [ 15,15].
Ww(Q1, Q) eriat ) BBy W(P1, P)

Couplings between Q; and Qs

Nguyen (2016). Borrowing strengh in hierarchical Bayes: Posterior concentration of the Dirichlet base measure.
Yurochkin et al (2019) Hierarchical optimal transport for document representation.
Bing et al (2016).The sketched Wasserstein distance for mixture distributions. 8 /1 6



Wasserstein over Wasserstein distance

X metric space, YW Wasserstein distance of order 1 on P(X).

Definition. If Q;, Q; € P(P(X)), the “Wasserstein over Wasserstein”
distance is:

Q)= inf E 5 [ p,p}.
Wi (Q1, Q2) eriat ) BBy W(P1, P)

Couplings between Q; and Qs Weak convergence over weak convergence

Theorem. If X is bounded, then W,y metrizes the weak convergence
over P(P(X)).

Nguyen (2016). Borrowing strengh in hierarchical Bayes: Posterior concentration of the Dirichlet base measure.
Yurochkin et al (2019) Hierarchical optimal transport for document representation.
Bing et al (2016).The sketched Wasserstein distance for mixture distributions. 8 /1 6
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Sample complexity: reminder

» P e P(X).
* X1,...X, ”d P, build P(n = Z(SX

How close is 7, from P?

X; e X

Theorem. If P is “d-dimensional”, then:
n—1/2

E [W(ﬁ(n), P)] = { n=1/21og(n)
n—1/d

ifd=1,
If d =2,
If d > 3.

Dudley (1969). The speed of mean Glivenko-Cantelli Convergence.

Weed & Bach (2019). Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance.

P € P(X)
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Sample complexity for Wasserstein over Wasserstein

P; € P(X) Q € P(P(X))

* Q € P(P(X)).

ii.d. - 1
. Pl,...Pnlfl\J Q, build @(n) — 5253
1=1
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Sample complexity for Wasserstein over Wasserstein

P; € P(X) Q € P(P(X))

* Q € P(P(X)).

ii.d. - 1
. Pl,...Pnlfl\J Q, build @(n) — 5253
1=1

Theorem. Take X C R“ bounded. Then for any Q N

E W Q. Q)] < Cx bglfj;ﬁgm,

and taking for Q a Dirichlet process, for any v > 0,

s (@09)] 2 2

nY
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What is this Dirichlet process giving a lower bound?

Parameters: base measure P, € P(X) and concentration parameter « > 0.

To draw P according to a Dirichlet process:

Sethuraman (1994). A constructive definition of Dirichlet priors. 11 /1 6
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To draw P according to a Dirichlet process:

1.1.d.
1. Draw Xq,.... X,,,... ~ P,.

2. Draw independently weights J,,....J,, ...

which sum to 1 (law depending on ).

4w ! o L.L.
3. Define P = Zjnéxn. <

n=1

Sethuraman (1994). A constructive definition of Dirichlet priors. 11 /1 6



What is this Dirichlet process giving a lower bound?

Parameters: base measure P, € P(X) and concentration parameter « > 0.

To draw P according to a Dirichlet process:

1.1.d.
1. Draw Xq,.... X,,,... ~ P,.

2. Draw independently weights J,,....J,, ...

which sum to 1 (law depending on ).

4w ! o L.L.
3. Define P = Zjnéxn. <

n=1

Remark. If the support of P, is X, the topological support of the
Dirichlet process is P(X).

Sethuraman (1994). A constructive definition of Dirichlet priors. 11 /16
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A new distance
Q1,Q2 € P(P(X)), recall:

1 4% ; = inf sup K 5 5. {
WL Q) = 8l et PP

/deﬁl—/xfdz%
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A new distance
Q1,Q2 € P(P(X)), recall:

) 4% , inf sup [K N / dP / dP }
W(@l Q2) vel'(Q1,Q2) fELlpll)(X) (Pl P2) 7|: f b f :
N
Definition. ‘><‘
drin(Q1,Q Sup inf E~~N{/fd]5—/fd]5}
Lip(Q1, Q2) = e er(@yge PP || [T [T

= sup W(/fdp1,/fdp2> Py ~Qq, P, ~ Qs
X X

f€Lipq (X)

Idea. Project P(X) on Rvia P +— | fdP for f € Lip, (X), then measure

Wasserstein distance of projections. /
13/16



A new distance

Remark. Replace Lip,(X) by F class of
function f : X — R generating an Integral
Probability Metric. We call the distance
Hierarchical IPM.

Definition.

13/16



Properties of this new distance

Theorem. There holds dp;, < Wp.
If X compact, di;, IS a distance metrizing weak convergence over P(P(X)).
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Properties of this new distance

Theorem. There holds dp;, < Wp.

If X compact, di;, IS a distance metrizing weak convergence over P(P(X)).

Theorem

° Pl,..

(sample complexity).
. Q € P(P(X)) with X

I.i.d.

bounded subset of R<.

P, '~ Q, builc

. 1 —
Q) = - Z op,.
i—1
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Properties of this new distance

Theorem. There holds dp;, < Wp.
If X compact, di;, IS a distance metrizing weak convergence over P(P(X)).

Theorem (sample complexity). Q) Yy
(

» Q € P(P(X)) with X bounded subset of R<. . ‘\\‘\
. . 1 <
l.1.d. Q(n) — E ;(53 7

« P,... P, ~ Q, builc

Then n~1/2 ifd=1,
£ [dLip (@(n)a @)} < In"Y2log(n) ifd=2, [
n_l/d |f d 2 3. 7 1015 102 1025

Rate for classical Wasserstein distance in R, < log(log(n))/log(n). 14,/16



A word on Numerics

Py
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Py,
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A word on Numerics

] — .
H ‘ X P = — dx. . discrete
l R TH,EE: X1,

—
X1, J

| — .
:—55.d t
Q - p, discrete

1=1

E
¢
U
[

l — .
— E 0x, ; discrete
7n,j:ﬂ_ ’

Each element of P(P(X)) is stored as a n x m array of atoms (and weights).
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A word on Numerics

Pl m
1 :
X P = — |
H ‘ l X~ P mZ(SX” discrete
| X1, J=1
= — dp. discrete
Q-2 i discrte

1=1

] — .
‘ H‘ X Pn:—E(S ~discrete
. m 321 Xnu?

Each element of P(P(X)) is stored as a n x m array of atoms (and weights).

Computing dy;, is finding the supremum of f — W([ fdP, [ fdP,)
among Lip, (X).

Non convex, non concave. We propose a gradient ascent when X C R.
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Thank you for your attention
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