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Merging of opinions

What about in Bayesian
Nonparametrics?
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Previous works and today’s setting
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Today:
- NonParametrics: focus on (normalized) Completely
Random Measures (CRM) as prior.
« Optimal transport distance.
- Rates for merging of opinions.

Side result: identifiability Side result: Asymptotic of
of normalization in CRM. the U latent variable.
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p random probability measure on X

X1, Xo,..., X,|D kg p  (Why? More flexibility)

(justified by exchangeability)

5 [ N
ization: P = —— random measure
Normalization: A(X) H
Definition. /1 is a Completely
Random Measure if ji(4,), ..., ”
ii(A,) independent for disjoint A
A ... A,

Example. /i is (a,b) Gamma CRM with base measure F.

Then p is («, Py) Dirichlet process
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Structure of CRMs
Theorem. If no deterministic components, no fixed atoms
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Lévy intensity  v(ds,dx)= Py(dx)p.(ds) ﬁ

‘%x(ds) distribution of jumps

Distributions of atoms P, Infinite mass
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Kingman (1967). Completely random measures.
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A posteriori

Data X1,..., X, gives posterior i* = | X ... X,

Theorem. There exists a latent variable U such that

distinct values
\‘k Observations
lNU—ﬁU+z)MX¢//
1=1 ‘\
Random jumps

Lévy intensity vy (ds, dz) = e Y v(ds, dx)

Consequence. ;* is a Cox CRM, a “CRM with random Levy
Intensity”.
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Topology:

Theorem. If scaled homogeneous CRMs with same Py:
Wi(i'(A), i*(A)) < dw(v',v?).

W, ( /X fdat, /X fdﬁ2) < cpdw (V')
with ¢ = max(|| |00, Lip(f))-

In General:

Consequence. Convergence in our new distance implies
weak convergence of the random measures.
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Dirichlet process (a.k.a. normalized Gamma CRM)
it ~ Gamma(a®, PY), i =1,2

" (dx) K ‘\ Base probability measure

Total base measure
Data Xi,...,X,,..., no “truth”, only sup,, + >7_, | Xx| < +o0.

Then | (il i) = J + A=
Jumps AL Atoms
2.0 101 =0
;- o |- S
. =
J decreasing al = o? decreasing Py = P#: max at vala?

12/17



Dirichlet process: intuition

Predictive distribution

Xoi1| X1, ... X,y ~

)
a—l—n oz—l—nnZX’“

13/17



Dirichlet process: intuition

Predictive distribution

Xoi1| X1, ... X,y ~

)
a—l—n oz—l—nnZX’“

Py
A

® o—» |, k::l(SXk

13/17



Dirichlet process: intuition

Predictive distribution

84
Xoi1| X1, ... X,y ~

Py A )
a—+n oz—l—nnZX’“

Py
A

®
\ | [
®

Rate 1/n LI RPN Y

Rate dimension
™ dependent

13/17



Dirichlet process: intuition

Predictive distribution

Xoi1| X1, ... X,y ~

\/
Rate 1/n

Py

A

)
a—l—n oz—l—nnZX’“

Merging always happen at rate 1/n
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Dirichlet process: intuition

Predictive distribution

84
Xoi1| X1, ... X,y ~

)
a—l—n oz—l—nnZX’“

Py
{ Merging may not start right directly
o
®
® ®
\/ °
Rate 1/n © 00 o 2 04, %Zzzléx

Rate dimension
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Generalized Gamma CRM with parameters o, Py and o € [0,1)

'8} 6_ o=20
dsd P Gamma(a, Py)
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A posteriori, latent variable U such that
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cc  I'(l—o) sl+

+Z

dv(s,x) =

distinct values
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Theorem. There holds (1 + U)? ~ r, in L' with
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« Merging if k < n
« Merging rate depends on k,n and o.

- Different outcomes if » small or % large. 15/17



Generalized Gamma: simulations

When k < no/(1+0o)
(Ground truth: Dirichlet)

log (!!\]\:" 1
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+0.4 08 \ “~o. 1709 log(n)
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merging of opinions.
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To be explored
- Other use of our distance in BNP,
- What is a good distance between random measures?

Thank you for your attention
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