Quantifying the merging of opinions in Bayesian nonparametrics via optimal transport

Hugo Lavenant

Bocconi University

CIRM Conference "Approximation Methods in Bayesian Analysis",
Marseille (France), June 22, 2023

Joint work with:

Marta Catalano

Joint work with:

Marta Catalano

Disclaimers

I am not a (Bayesian) statistician.

My background: mathematical analysis, optimal transport.

Question: different priors π^1 , π^2 , same data $X_1, \ldots X_n$.

- Does $\theta^1|X_1,\ldots X_n\stackrel{\mathsf{d}}{\simeq} \theta^2|X_1,\ldots X_n$?
- At which rate in *n*?

Question: different priors π^1 , π^2 , same data $X_1, \ldots X_n$.

- Does $\theta^1|X_1,\ldots X_n\stackrel{\mathsf{d}}{\simeq} \theta^2|X_1,\ldots X_n$?
- At which rate in *n*?

distance between posteriors

What about in Bayesian Nonparametrics?

 $\begin{array}{c} \theta|X_1 \\ \text{over infinite} \\ \text{dimensional spaces} \end{array}$

Question: different priors π^1 , π^2 , same data $X_1, \ldots X_n$.

- Does $\theta^1|X_1, \dots X_n \stackrel{\mathsf{d}}{\simeq} \theta^2|X_1, \dots X_n$?
- At which rate in *n*?

distance between posteriors

No need to converge to a truth

No need to converge to a truth

No need to converge to a truth

No need to converge to a truth

If converges to a truth, different than posterior consistency and contraction rate

No need to converge to a truth

If converges to a truth, different than posterior consistency and contraction rate

No need to converge to a truth

If converges to a truth, different than posterior consistency and contraction rate

Previous works and today's setting

Blackwell and Dubins: yes if $\pi^1 \ll \pi^2$ and data generated from the model.

Ley, Reinart, Swan: rates of convergence in optimal transport distance with $\pi^1 \ll \pi^2$ in 1d.

Previous works and today's setting

Blackwell and Dubins: yes if $\pi^1 \ll \pi^2$ and data generated from the model.

Not valid in BNP

Ley, Reinart, Swan: rates of convergence in optimal transport distance with $\pi^1 \ll \pi^2$ in 1d.

Today:

- NonParametrics: focus on (normalized) Completely Random Measures (CRM) as prior.
- Optimal transport distance.
- Rates for merging of opinions.

Previous works and today's setting

Blackwell and Dubins: yes if $\pi^1 \ll \pi^2$ and data generated from the model.

Not valid in BNP

Ley, Reinart, Swan: rates of convergence in optimal transport distance with $\pi^1 \ll \pi^2$ in 1d.

Today:

- NonParametrics: focus on (normalized) Completely Random Measures (CRM) as prior.
- Optimal transport distance.
- Rates for merging of opinions.

Side result: identifiability of normalization in CRM.

Side result: Asymptotic of the *U* latent variable.

1 - Completely Random Measures a priori and posteriori

2 - Distance between CRMs

$$\inf_{(X,Y)} \{ [\ldots], X \sim P^1, Y \sim P^2 \}$$

3 - Merging of opinions with CRMs

1 - Completely Random Measures a priori and posteriori

2 - Distance between CRMs
$$\inf_{(X,Y)}\{[\ldots],\,X\sim P^1,Y\sim P^2\}$$

3 - Merging of opinions with CRMs

Bayesian NonParametrics and normalized CRM

 $ilde{p}$ random probability measure on $\mathbb X$

$$X_1, X_2, \ldots, X_n | \, \widetilde{p} \stackrel{\mathsf{i.i.d.}}{\sim} \, \widetilde{p}$$
 (Why? More flexibility)

(justified by exchangeability)

Bayesian NonParametrics and normalized CRM

 $ilde{p}$ random probability measure on $\mathbb X$

$$X_1, X_2, \ldots, X_n | \, \widetilde{p} \stackrel{\mathsf{i.i.d.}}{\sim} \widetilde{p}$$
 (Why? More flexibility)

(justified by exchangeability)

Normalization: $\tilde{p} = \frac{\mu}{\tilde{\mu}(\mathbb{X})}, \quad \tilde{\mu} \text{ random measure}$

$$\tilde{p} = \frac{\mu}{\tilde{\mu}(\mathbb{X})},$$

Definition. $\tilde{\mu}$ is a **Completely** Random Measure if $\tilde{\mu}(A_1)$, ..., $\tilde{\mu}(A_n)$ independent for disjoint

Bayesian NonParametrics and normalized CRM

 $ilde{p}$ random probability measure on $\mathbb X$

$$X_1, X_2, \ldots, X_n | \, \widetilde{p} \stackrel{\text{i.i.d.}}{\sim} \widetilde{p}$$
 (Why? More flexibility)

(justified by exchangeability)

$$\tilde{p} = \frac{\tilde{\mu}}{\tilde{\mu}(\mathbb{X})},$$

Normalization: $\tilde{p} = \frac{\mu}{\tilde{\mu}(\mathbb{X})}, \quad \tilde{\mu} \text{ random measure}$

Definition. $\tilde{\mu}$ is a **Completely** Random Measure if $\tilde{\mu}(A_1)$, . . ., $\tilde{\mu}(A_n)$ independent for disjoint A_1,\ldots,A_n .

Example. $\tilde{\mu}$ is (α, b) Gamma CRM with base measure P_0 .

Then \tilde{p} is (α, P_0) Dirichlet process

When do we have

means $ilde{\mu}^1$ and $ilde{\mu}^2$ define the same prior

$$\tilde{p}^1 = \frac{\tilde{\mu}^1}{\tilde{\mu}^1(\mathbb{X})} \stackrel{\mathrm{d}}{=} \frac{\tilde{\mu}^2}{\tilde{\mu}^2(\mathbb{X})} = \tilde{p}^2$$

When do we have

means $ilde{\mu}^1$ and $ilde{\mu}^2$ define the same prior

$$\tilde{p}^1 = \frac{\tilde{\mu}^1}{\tilde{\mu}^1(\mathbb{X})} \stackrel{\mathrm{d}}{=} \frac{\tilde{\mu}^2}{\tilde{\mu}^2(\mathbb{X})} = \tilde{p}^2$$

Example

- $\tilde{\mu}^1$ is (α, b^1) Gamma.
- $\tilde{\mu}^2$ is (α, b^2) Gamma.
 - → Dirichlet process

When do we have

means $\tilde{\mu}^1$ and $\tilde{\mu}^2$ define the same prior

$$\tilde{p}^1 = \frac{\tilde{\mu}^1}{\tilde{\mu}^1(\mathbb{X})} \stackrel{\mathrm{d}}{=} \frac{\tilde{\mu}^2}{\tilde{\mu}^2(\mathbb{X})} = \tilde{p}^2$$

Example

- - → Dirichlet process

Example

- $\tilde{\mu}^1$ is (α, b^1) Gamma. $\tilde{\mu}^2$ is (α, b^2) Gamma. $\tilde{\mu}^2$ is (α, b^2) Gamma. $\tilde{\mu}^2$ is (α, b^2) Gamma. $\tilde{\mu}^2$ is $(\alpha^2, \tau^2, \sigma)$ gen. Gamma.

and
$$\frac{\alpha^1}{\alpha^2} = \left(\frac{\tau^2}{\tau^1}\right)^{\sigma}$$

When do we have

means $\tilde{\mu}^1$ and $\tilde{\mu}^2$ define the same prior

$$\tilde{p}^1 = \frac{\tilde{\mu}^1}{\tilde{\mu}^1(\mathbb{X})} \stackrel{\mathrm{d}}{=} \frac{\tilde{\mu}^2}{\tilde{\mu}^2(\mathbb{X})} = \tilde{p}^2$$

Example

- - → Dirichlet process

Example

- $\tilde{\mu}^1$ is (α, b^1) Gamma. $\tilde{\mu}^1$ is $(\alpha^1, \tau^1, \sigma)$ gen. Gamma.
- $\tilde{\mu}^2$ is (α, b^2) Gamma. $\tilde{\mu}^2$ is $(\alpha^2, \tau^2, \sigma)$ gen. Gamma.

and
$$\frac{\alpha^1}{\alpha^2} = \left(\frac{\tau^2}{\tau^1}\right)^o$$

Theorem. For CRM with finite mean and infinite activity,

$$\frac{\tilde{\mu}^1}{\tilde{\mu}^1(\mathbb{X})} \stackrel{\mathsf{d}}{=} \frac{\tilde{\mu}^2}{\tilde{\mu}^2(\mathbb{X})} \quad \Leftrightarrow \quad \tilde{\mu}^1 \stackrel{\mathsf{d}}{=} a\tilde{\mu}^2 \text{ for } a > 0.$$

Theorem. If no deterministic components, no fixed atoms

$$\tilde{\mu} = \sum_{k} J_k \delta_{x_k}$$

Theorem. If no deterministic components, no fixed atoms

Theorem. If no deterministic components, no fixed atoms

$$ilde{\mu} = \sum_k J_k \delta_{x_k}$$

$$\left(ext{Look at } (J_k, x_k) \right)$$

Lévy intensity $\nu(\mathrm{d} s,\mathrm{d} x)$

Theorem. If no deterministic components, no fixed atoms

$$ilde{\mu} = \sum_k J_k \delta_{x_k}$$
 Look at (J_k, x_k)

Lévy intensity
$$\nu(\mathrm{d}s,\mathrm{d}x) = P_0(\mathrm{d}x)\rho_x(\mathrm{d}s)$$

Distributions of atoms P_0

 $\rho_x(\mathrm{d}s)$ distribution of jumps Infinite mass

Ex for gamma: $\rho = \frac{\alpha e^{-s}}{s} ds$

$$(0,+\infty)$$

A posteriori

Data X_1, \ldots, X_n gives posterior $\tilde{\mu}^* = \tilde{\mu} | X_1 \ldots X_n$

A posteriori

Data X_1, \ldots, X_n gives posterior $\tilde{\mu}^* = \tilde{\mu} | X_1 \ldots X_n$

Theorem. There exists a latent variable U such that

Lévy intensity $\nu_U(\mathrm{d} s,\mathrm{d} x)=e^{-sU}\nu(\mathrm{d} s,\mathrm{d} x)$

A posteriori

Data X_1, \ldots, X_n gives posterior $\tilde{\mu}^* = \tilde{\mu} | X_1 \ldots X_n$

Theorem. There exists a latent variable U such that

Consequence. $\tilde{\mu}^*$ is a **Cox CRM**, a "CRM with random Lévy intensity".

Identifiability a posteriori

Recall for CRMs

$$\frac{\tilde{\mu}^1}{\tilde{\mu}^1(\mathbb{X})} \stackrel{\mathrm{d}}{=} \frac{\tilde{\mu}^2}{\tilde{\mu}^2(\mathbb{X})}$$

Identifiability a posteriori

Recall for CRMs

For CRMs
$$\frac{\tilde{\mu}^1}{\tilde{\mu}^1(\mathbb{X})} \stackrel{\mathrm{d}}{=} \frac{\tilde{\mu}^2}{\tilde{\mu}^2(\mathbb{X})} \quad \Leftrightarrow \quad \frac{\tilde{\mu}^1}{\mathbb{E}(\tilde{\mu}^1(\mathbb{X}))} \stackrel{\mathrm{d}}{=} \frac{\tilde{\mu}^2}{\mathbb{E}(\tilde{\mu}^2(\mathbb{X}))}.$$

$$\Leftrightarrow \tilde{\mu}^1 \stackrel{\mathrm{d}}{=} a \tilde{\mu}^2 \text{ for } a > 0$$

Definition. If $\tilde{\mu}$ conditionnally a CRM w.r.t. U, define $\tilde{\mu}_{\mathcal{S}}$:

$$\tilde{\mu}_{\mathcal{S}}|U = \frac{\tilde{\mu}|U}{\mathbb{E}(\tilde{\mu}(\mathbb{X})|U)} U$$

Theorem. If $\tilde{\mu}^1$, $\tilde{\mu}^2$ are both Cox CRM then

$$\frac{\tilde{\mu}^1}{\tilde{\mu}^1(\mathbb{X})} \stackrel{\mathsf{d}}{=} \frac{\tilde{\mu}^2}{\tilde{\mu}^2(\mathbb{X})} \quad \Leftrightarrow \quad \tilde{\mu}^1_{\mathcal{S}} \stackrel{\mathsf{d}}{=} \tilde{\mu}^2_{\mathcal{S}}.$$

1 - Completely Random Measures a priori and posteriori

2 - Distance between CRMs

$$\inf_{(X,Y)} \{ [\ldots], X \sim P^1, Y \sim P^2 \}$$

3 - Merging of opinions with CRMs

Distance between CRMs

$$\tilde{\mu}^{1} \iff \tilde{\mu}^{2}$$

$$\nu^{1}(\mathrm{d}s,\mathrm{d}x) \iff \nu^{2}(\mathrm{d}s,\mathrm{d}x)$$

$$\downarrow^{p_{0}^{1}}(\mathrm{d}x)\rho_{x}^{2}(\mathrm{d}s) \iff P_{0}^{2}(\mathrm{d}x)\rho_{x}^{2}(\mathrm{d}s)$$

Definition.

$$d_{\mathbf{W}}(\nu^{1}, \nu^{2}) = \inf_{(X,Y)} \left\{ \mathbb{E}(d_{\mathbb{X}}(X,Y) \\ X \sim P_{0}^{1}, Y \sim P_{0}^{2} \right\}$$

$$W_*(\rho^1,\rho^2) = \int_0^{+\infty} |\rho^1(t,+\infty) - \rho^2(t,+\infty)| \mathrm{d}t$$
 "Extended Wasserstein distance"

Definition.

$$d_{\mathbf{W}}(\nu^{1}, \nu^{2}) = \inf_{(X,Y)} \left\{ \mathbb{E}(d_{\mathbb{X}}(X,Y) + W_{*}(\rho_{X}^{1}(\mathrm{d}s), \rho_{Y}^{2}(\mathrm{d}s))) \right\}$$

$$X \sim P_{0}^{1}, Y \sim P_{0}^{2}$$

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions.

$$W_*(\rho^1,\rho^2) = \int_0^{+\infty} |\rho^1(t,+\infty) - \rho^2(t,+\infty)| \mathrm{d}t$$
 "Extended Wasserstein distance"

Definition.

$$d_{\mathbf{W}}(\nu^{1}, \nu^{2}) = \inf_{(X,Y)} \left\{ \mathbb{E}(d_{\mathbb{X}}(X,Y) + W_{*}(\rho_{X}^{1}(\mathrm{d}s), \rho_{Y}^{2}(\mathrm{d}s))) \right\}$$

$$X \sim P_{0}^{1}, Y \sim P_{0}^{2}$$

If $\tilde{\mu}^1$, $\tilde{\mu}^2$ have random Lévy intensity $\tilde{\nu}^1, \tilde{\nu}^2$

$$d_{\text{WoW}}(\tilde{\nu}^1, \tilde{\nu}^2) = \inf_{(\tilde{\nu}^1, \tilde{\nu}^2)} \mathbb{E}(d_{\text{W}}(\tilde{\nu}^1, \tilde{\nu}^2))$$

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions.

Comments on the distance

- Interpretable.
- Analytically tractable.

Comments on the distance

- Interpretable.
- Analytically tractable.

Topology:

Theorem. If scaled homogeneous CRMs with same P_0 :

$$W_1(\tilde{\mu}^1(A), \tilde{\mu}^2(A)) \le d_W(\nu^1, \nu^2).$$

Consequence. Convergence in our new distance implies weak convergence of the random measures.

Comments on the distance

- Interpretable.
- Analytically tractable.

Topology:

Theorem. If scaled homogeneous CRMs with same P_0 :

$$W_1(\tilde{\mu}^1(A), \tilde{\mu}^2(A)) \le d_W(\nu^1, \nu^2).$$

In General:

$$W_1\left(\int_{\mathbb{X}} f \,\mathrm{d}\tilde{\mu}^1, \int_{\mathbb{X}} f \,\mathrm{d}\tilde{\mu}^2\right) \le c_f d_{\mathbf{W}}(\nu^1, \nu^2)$$

with
$$c_f = \max(\|f\|_{\infty}, \operatorname{Lip}(f))$$
.

Consequence. Convergence in our new distance implies weak convergence of the random measures.

1 - Completely Random Measures a priori and posteriori

2 - Distance between CRMs

3 - Merging of opinions with CRMs

$$\tilde{\mu}^i \sim \mathrm{Gamma}(\alpha^i, P_0^i), \qquad i=1,2$$

$$\nu^i = \alpha^i \frac{e^{-s}}{s} \mathrm{d} s P_0^i(\mathrm{d} x)$$
 Base probability measure Total base measure

$$\tilde{\mu}^i \sim \mathrm{Gamma}(\alpha^i, P_0^i), \qquad i=1,2$$

$$\nu^i = \alpha^i \frac{e^{-s}}{s} \mathrm{d} s P_0^i(\mathrm{d} x)$$
 Base probability measure Total base measure

Data X_1, \ldots, X_n, \ldots , no "truth", only $\sup_n \frac{1}{n} \sum_{k=1}^n |X_k| < +\infty$.

Data X_1, \ldots, X_n, \ldots , no "truth", only $\sup_n \frac{1}{n} \sum_{k=1}^n |X_k| < +\infty$.

Then
$$d_{V}$$

Then
$$d_{\mathrm{W}}(\tilde{\mu}^{1,*},\tilde{\mu}^{2,*}) = J + A \asymp \frac{1}{n}$$
 Jumps Atoms

Base probability measure

Total base measure

Data X_1, \ldots, X_n, \ldots , no "truth", only $\sup_n \frac{1}{n} \sum_{k=1}^n |X_k| < +\infty$.

Then

$$d_{\mathbf{W}}(\tilde{\mu}^{1,*},\tilde{\mu}^{2,*}) = J + A \asymp \frac{1}{n}$$
 Jumps Atoms

J decreasing

$$\alpha^1=\alpha^2$$
 decreasing $P_0^1=P_0^2$: max at $\sqrt{\alpha^1\alpha^2}$

$$X_{n+1}|X_1, \dots X_n \sim \frac{\alpha}{\alpha+n}P_0 + \frac{n}{\alpha+n}\frac{1}{n}\sum_{k=1}^n \delta_{X_k}$$

$$X_{n+1}|X_1, \dots X_n \sim \frac{\alpha}{\alpha+n}P_0 + \frac{n}{\alpha+n}\frac{1}{n}\sum_{k=1}^n \delta_{X_k}$$

$$X_{n+1}|X_1, \dots X_n \sim \frac{\alpha}{\alpha+n}P_0 + \frac{n}{\alpha+n}\frac{1}{n}\sum_{k=1}^n \delta_{X_k}$$

$$X_{n+1}|X_1, \dots X_n \sim \frac{\alpha}{\alpha+n}P_0 + \frac{n}{\alpha+n}\frac{1}{n}\sum_{k=1}^n \delta_{X_k}$$

$$X_{n+1}|X_1, \dots X_n \sim \frac{\alpha}{\alpha+n}P_0 + \frac{n}{\alpha+n}\frac{1}{n}\sum_{k=1}^n \delta_{X_k}$$

Generalized Gamma: setting

Generalized Gamma CRM with parameters α, P_0 and $\sigma \in [0, 1)$

$$d\nu(s,x) = \frac{\alpha}{\Gamma(1-\sigma)} \frac{e^{-s}}{s^{1+\sigma}} ds dP_0(x) \qquad \qquad \bullet = 0$$

$$\tilde{\mu}^1 \qquad \qquad \tilde{\mu}^2$$
Gamma(α, P_0)

Generalized Gamma: setting

Generalized Gamma CRM with parameters α, P_0 and $\sigma \in [0, 1)$

$$d\nu(s,x) = \frac{\alpha}{\Gamma(1-\sigma)} \frac{e^{-s}}{s^{1+\sigma}} ds dP_0(x) \qquad \qquad \bullet \qquad \bullet \qquad \bullet$$
 Gamma(α, P_0)

A posteriori, latent variable U such that

distinct values

$$\mathrm{d}\nu^*|U(s,x) = \frac{(1+U)^\sigma}{c^\sigma} \frac{\alpha}{\Gamma(1-\sigma)} \frac{e^{-cs}}{s^{1+\sigma}} \mathrm{d}s \mathrm{d}P_0(x) \\ + \sum_{i=1}^k (n_i-\sigma) \frac{e^{-cs}}{s} \mathrm{d}s \delta_{X_i^*}(\mathrm{d}x)$$
 with $c=\alpha(1+U)^\sigma+n-k\sigma$

Number observations

U density proportional to $u^{\mathbf{n}-1}(1+u)^{\mathbf{k}-\mathbf{n}\sigma}e^{-\alpha/\sigma(1+u)^{\sigma}}$.

U density proportional to $u^{n-1}(1+u)^{k-n\sigma}e^{-\alpha/\sigma(1+u)^{\sigma}}$.

Theorem. There holds $(1+U)^{\sigma}\sim r_n$ in L^1 with $r_n\asymp \begin{cases} n^{\sigma/(1+\sigma)} & \text{if } k\lesssim n^{\sigma/(1+\sigma)} \\ k & \text{if } k\gg n^{\sigma/(1+\sigma)} \end{cases} \text{ if } k \lesssim n^{\sigma/(1+\sigma)} \begin{cases} n^{\sigma/(1+\sigma)} & \frac{15}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{cases} \text{ distinct values} \end{cases}$

U density proportional to $u^{n-1}(1+u)^{k-n\sigma}e^{-\alpha/\sigma(1+u)^{\sigma}}$.

Theorem. There holds $(1+U)^{\sigma} \sim r_n$ in L^1 with

$$r_n symp egin{cases} n^{\sigma/(1+\sigma)} & ext{if } k \lesssim n^{\sigma/(1+\sigma)} \ k & ext{if } k \gg n^{\sigma/(1+\sigma)} \end{cases}$$
 and $(1+U)^\sigma$ is log-concave. distinct values

Consequence.
$$d_{\mathrm{WoW}}(\tilde{\mu}^{1,*}, \tilde{\mu}^{2,*}) \asymp \max\left(\frac{1}{n^{1/(1+\sigma)}}, \frac{k}{n}\right)$$
 Gen. Gamma \leftrightarrow Gamma

U density proportional to $u^{n-1}(1+u)^{k-n\sigma}e^{-\alpha/\sigma(1+u)^{\sigma}}$.

Theorem. There holds $(1+U)^{\sigma} \sim r_n$ in L^1 with

$$r_n symp egin{cases} n^{\sigma/(1+\sigma)} & ext{if } k \lesssim n^{\sigma/(1+\sigma)} \ k & ext{if } k \gg n^{\sigma/(1+\sigma)} \end{cases}$$
 and $(1+U)^\sigma$ is log-concave. distinct values

Consequence.
$$d_{\mathrm{WoW}}(\tilde{\mu}^{1,*}, \tilde{\mu}^{2,*}) \asymp \max\left(\frac{1}{n^{1/(1+\sigma)}}, \frac{k}{n}\right)$$
 Gen. Gamma \leftrightarrow Gamma

- Merging if $k \ll n$
- Merging rate depends on k, n and σ .
- **Different** outcomes if n small or k large.

Generalized Gamma: simulations

When $k \ll n^{\sigma/(1+\sigma)}$

(Ground truth: Dirichlet)

When $k \gg n^{\sigma/(1+\sigma)}$

(Ground truth: Pitman-Yor)

Conclusion

What we did

- Distance between CRMs and quantitative study of merging of opinions.
- (Previous work: use of the distance to measure dependence)

Conclusion

What we did

- Distance between CRMs and quantitative study of merging of opinions.
- (Previous work: use of the distance to measure dependence)

To be explored

- Other use of our distance in BNP,
- What is a good distance between random measures?

Conclusion

What we did

- Distance between CRMs and quantitative study of merging of opinions.
- (Previous work: use of the distance to measure dependence)

To be explored

- Other use of our distance in BNP,
- What is a good distance between random measures?

Thank you for your attention