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Lifting of the action
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Lifting of the action

1 1
X = [0,1], B(w = [ il dt
2 0
E minimized for (constant Minimizers of Tz are geodesics (for an
speed) geodesics optimal transport geometry)
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Lifting of the Dirichlet energy

Eu) = [ |[Vu(z)|*dz
'/ /

E minimized for harmonic maps
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Lifting of the Dirichlet energy

Y

E) = [ |Vu(z)|* dz Minimizers of the Eulerian lifting of
'/ the Dirichlet energy are harmonic

. : measure-valued maps.
E minimized for harmonic maps P
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Solomon, Guibas and Butscher (2013). Dirichlet energy for analysis and synthesisof soft maps. 4/26
Lavenant (2019). Harmonic mappings valued in the Wasserstein space.



Why? map denoising, in imaging

minimize E(u):/W(Vu(x))da:—l—/f(:c,u(az))dx

Vogt, Haase, Bednarski and Lellmann (2020). On the connection between dynamical optimal transport and functional lifting. 5 /26
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Why? map denoising, in imaging

data fitting, like
f(z,u(@)) = |u(z) — u(z)|

minimize E(u):/W(Vu(:z:))da:+/f(:c,u(az))dx 4/

Regularization /‘ Codomain of v manifold, or f non

convex — convexification.
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Vogt, Haase, Bednarski and Lellmann (2020). On the connection between dynamical optimal transport and functional lifting. 5 /26

Vogt and Lellmann (2018). Measure-valued variational models with applications todiffusion-weighted imaging.



The link with optimal transport

Simpler question: ¢: Y x Y — [0, +00]
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The link with optimal transport

Simpler question: ¢: Y x Y — [0, +00] ) :
Question: how to extend c Into

Te : P(Y) x P(Y) — |0, 400]

Probabilities on Y x Y with

(41 142 marginals /i1,
% % T(AXY) = pu1(A); 71(Y X B) = us(B);

T
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The link with optimal transport

Simpler question: ¢: Y x Y — [0, +00] ) :
Question: how to extend c Into

T.: P(Y) x P(Y) = [0, +0)

Probabilitieson Y x Y with
(41 142 marginals /i1,

Y Y

T

Tc(/u,m) = min {/ C(ylayZ) W(dyladyQ) SIS H(M17M2)}
Y XY

Theorem. 7. is the largest convex and lower semi continuous functional
on P(Y) x P(Y) such that 7.(6,,,9d,,) = c(y1,y2) forany yi, yo.

w.r.t. narrow convergence if ¢ l.s.c. and, e.g. Y polish space
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Savaré and Sodini (2022). A simple relaxation approach to duality for Optimal Transport problems in completely regular spaces.



Today’s question

Maps u : X — Y, equivalent if equal m-a.e.
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(X, m)

measure on X
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Today’s question

Maps v : X — Y, equivalent if equal m-a.e.

E:L%(X,Y,m)— [0, +o0]

Want to extend to L°(X,P(Y), m)
(X, m) Define ey * T > 5u(a;).

measure on X

Question. What is the largest convex and lower semi continuous functional
T : L(X,P(Y),m) — [0, +oc]
such that 7 (u,) = E(u) for all u?

7/26




1 - The Lagrangian lifting or optimal
transport with an infinity of marginals

——

2 - The Eulerian lifting N
ANy

3 - Understanding the difference:
localization of functionals
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X,Y polish (metric, complete, separable) spaces.

1 - The Lagrangian lifting or optimal
transport with an infinity of marginals

2 - The Eulerian lifting

3 - Understanding the difference:
localization of functionals
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Optimal transport with several marginals

Transport problem with N marginals: ¢: Y~ — [0, +00]

cost c(y1,...,yN)
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Optimal transport with several marginals

Transport problem with N marginals: ¢: Y~ — [0, +00]

Question: how to extend ¢
into 7. : P(Y)Y — [0, +o0]

Probabilities on Y with
marginals p1,..., un

(

\

/ C(yl,---ny)ﬂ-(dyla"°7dy2)
YN

e (p, ..

N

\

/

Largest convex l.s.c. such that 7.(6,,,...,0,y) =c(y1,---,YnN)-
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Optimal transport with several marginals

Transport problem with N marginals: ¢: Y~ — [0, +00]

L He Question: how to extend ¢
Into 7. : P(Y)N — [0, +00]
KN
‘ T ‘ ‘ Probabilities on Y with
v LN —1 Y marginals p1,..., un
Te(pr, -, pn) = min < / c(yi,---,y~n) m(dys,...,dy2) )
s N

Y € I(pa, o ) ¢

/

Idea: take limit N — +oc: Indexing set {1,..., N} becomes X
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Optimal transport with several marginals

Tra = ~—marginds: c: Y& — [0, +-00]
Y™ becomes X — Y,

and c becomes FE

pi, -5 iy € PY)Y m becomes () probability
becomes v) on maps X — Y.
uw: X —PY

70 YN

€ M(py, ..y i) ¢

/

Idea: take limit N — +oc: Indexing set {1,..., N} becomes X
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Maps of measures and measures on maps

pa € P(Y)
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Maps of measures and measures on maps

iy View 1 as measure on X x Y by

_—

Y —7</: z [){waduzé(/}/w(x,y)dux(y)> dm(z)

/\/N Theorem. (disintegration). As sets,

L°(X,P(Y),m) coincides with measures on
X x Y whose first marginal is m.
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Maps of measures and measures on maps

0 iy View 1 as measure on X x Y by

Y /Xxysoduzfx (L¢(w,y)dux(y)> dm(z)

Theorem. (disintegration). As sets,
L°(X,P(Y),m) coincides with measures on
X x Y whose first marginal is m.

(X, m)

Recall: i, : x> 0y (a).-

Definition. Q € P(L°(X,Y,m)) belongs to II(u) if (Intuition: if u ~ Q
then u(x) ~ u, for
U = / Uy dQ(U) m-a.e. x.)
LO(X,Y,m)

Proposition. II(u) if never empty (if X, Y polish spaces). 10/26



Multimarginal optimal transport with an infinity of marginals

- E:L°X,Y,m) — [0, +oc] lower semi continuous,
« 1 measure on X x Y with first marginal m.

Definition. (
To(n) = inf S [ B(u) dQ(u) = Q & TI(y)
Q@ | JLox,y,m)

\

/
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Multimarginal optimal transport with an infinity of marginals

- E:L°X,Y,m) — [0, +oc] lower semi continuous,
« 1 measure on X x Y with first marginal m.

Definition.

Te (1) 1g<

(

/LO(XY E(aQ) : Q)

\

/

Theorem.
- Tz Is always convex.

Narrow convergence on M_ (X xY)

- Under additional assumption, it is the largest convex and Ll.s.c. functional

such that

Yu,

Te(fu)

= F(u)

see next slides
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Idea of the proof
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Idea of the proof

Any T convex L.s.c. such that 7 (u,) = E(u)

T(w) =T (/ Ly, dQ(u)> Using def of Q € II(u)
LO

< T(Mu) dQ(u) jensen
IO
— / E(u)dQ(u)
L0
~ Te(p) Minimizing in Q € II(u)

Left to do: prove that 7z Is lower semi continuous.

12/26



Assumptionon E

To guarantee existence of optimal Q € II(x) and Ls.c. of Tg.

Assumption.
FE is L.s.c. and

the functional v +— FE(u)

has compact sublevel sets in L°(X,Y, m).
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Assumptionon E

To guarantee existence of optimal Q € II(x) and Ls.c. of Tg.

Assumption.
Fis l.s.c. and forany ¢ : Y — [0, +oc) with compact sublevel sets,
the functional wuw— E(u) / Y(u (z)

has compact sublevel sets in L°(X,Y, m).

“Coercivity of E + Tightness of "

Think E(u) = [ |Vul? \/

Remark. If X finite, no assumption needed on E besides L.s.c.
13/26



Curves of measures and measures on curves

R4

e

(10, 1], dt)

1
B(u) = / g dit
0

The previous result holds and there exists an optimal Q.
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Curves of measures and measures on curves

1
—— ./ _ o | P
Ri N E(U)—/O [0 |P dt

w The previous result holds and there exists an optimal Q.
(0, 1], dt)

1
Theorem. 7g(x) = min {/ / v (t,y)|P du(y)dt = Oy + divy (vp) = O} .
v 0 JRa

Lisini (2007). Characterization of absolutely continuous curves in Wasserstein spaces.
Ambrosio, Gigli and Savaré (2008). Gradient flows in metric spaces and in the space of probability measures.
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Curves of measures and measures on curves

1
__— .
N o B(u) = / g dit
0

The previous result holds and there exists an optimal Q.

(10, 1], dt)

1
Theorem. 7g(x) = min {/ / v (t,y)|P du(y)dt = Oy + divy (vp) = O} .
v 0 JRa

At optimality: «; = v(t, u;) for Q-a.e. w.

Lisini (2007). Characterization of absolutely continuous curves in Wasserstein spaces.
Ambrosio, Gigli and Savaré (2008). Gradient flows in metric spaces and in the space of probability measures.
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Curves of measures and measures on curves

U(tay) v 1
— = B(u) = / g dit
RY 0
E(u) = f01 ii|* for splines.
The previous result holds and there exists an optimal Q.
(0, 1], dt)

1
Theorem. 7g(x) = min {/ / v (t,y)|P du(y)dt = Oy + divy (vp) = O} .
v 0 JRa

At optimality: «; = v(t, u;) for Q-a.e. w.

Lisini (2007). Characterization of absolutely continuous curves in Wasserstein spaces.

Ambrosio, Gigli and Savaré (2008). Gradient flows in metric spaces and in the space of probability measures.

Benamou, Gallouét, Vialard (2019). Second-order models for optimal transport and cubic splines on the Wasserstein space. 14/26
Chen, Conforti, Georgiou (2018). Measure-valued spline curves: An optimal transport viewpoint.



1 - The Lagrangian lifting or optimal
transport with an infinity of marginals

2 - The Eulerian lifting

—
NS

AVt -

3 - Understanding the difference:
localization of functionals

15/26



The Eulerian lifting

X = Q c R? with Lebesgue measure, Y = R?, and W convex

E(u):/QW(Vu(:E))dx

Vogt, Haase, Bednarski and Lellmann (2020). On the connection between dynamical optimal transport and functional lifting.
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The Eulerian lifting

X = Q c R? with Lebesgue measure, Y = R?, and W convex

E(u):/QW(Vu(:E))dx

Definition. We define 7z gu (i) as

v

min < / W(v(z,y))dps(y)de st Vyp + divy,(vp) =0
Q JRa

v: Q x R? — R?*4 “density of Jacobian matrix”.

\

/

Vogt, Haase, Bednarski and Lellmann (2020). On the connection between dynamical optimal transport and functional lifting.
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The Eulerian lifting

X = Q c R? with Lebesgue measure, Y = R?, and W convex
U R4
Q E(u) = / W (Vu(zx))dx +/ f(x,u(x))dx
Q) Q

Deﬁnition We define Tg gui(p) as

\

min < / Wv(x,y)) dus(y)de st Vyu +divy(vp) =0
v Ra
QI xR49

v: Q x R? — R?*4 “density of Jacobian matrix”.

16/26

Vogt, Haase, Bednarski and Lellmann (2020). On the connection between dynamical optimal transport and functional lifting.



The Eulerian lifting

X = Q c R? with Lebesgue measure, Y = R?, and W convex

u QRQ E(u):/QW(Vu(ac))dx+/Qf(g;-ju(gj))daC

=y

Deﬁnition We define Tg gui(p) as

v

min < / Wv(x,y)) dus(y)de st Vyu +divy(vp) =0
R4

\

+/Q ) s )de

v: Q x R? — R?*4 “density of Jacobian matrix”.

Remark. To have a convex formulation: (u,v) <

(1, o).

Vogt, Haase, Bednarski and Lellmann (2020). On the connection between dynamical optimal transport and functional lifting.

16/26



Example: harmonic maps valued in the Wasserstein space

1 :
E(u) = —/ Vu(x)]? de i
2 Q ‘c
Dirichlet problem.
min{7g,Eu (#) -
97 < v
. Y% +
u given for x € 002} . .
% e
* +
Solutions are harmonic maps. 3 || 9| [ [ | [9e] 9] [ | [ | [ | [ |4 [+][+] [+

17/26

Lavenant (2019). Harmonic mappings valued in the Wasserstein space.



Example: harmonic maps valued in the Wasserstein space

% |%||%||%||%| % % |%|%| %
1 % |%||% % ||%||%| % | |% | %%
E(u) — _/ ‘VU(CI;)’Z dz %|%||%||% | %| %| % %% %
2 Q %% ||% || % ||%||% || % % ||% | % %
% % ||% || % || % ||% | % | % |% | %) % Y
. 0 (919 [ 2|26 |20 |20 [ 20 ][ 2|20 || 2 | [ 2
Dirichlet problem. A AN AT AT
mln{TE,Eul(M) Y% | % || Y% || Y| | e || Y || Ye || || Y || e || Y| || || ¥
L Yo [P [P [ 2| [ e[ e | [ 2 || 2 || 2 | [ 2 | [ 4 | [ 4] 4 || 4
. e % [ 2 | [ | [ 2e | [ | [ 2 |2 | [ | [ 4 | [ ][4 |4 ][4
pe SlIVen forz € 8Q} Yo |2 % % | [%e | 2 | [ | [ | [ | [ |4 |4 ][4 ][4
ydik dik 215 218 215 2IR 2R 21k 2k 2k Ik JIE = +
y din 2R 2R 2R 215 215 215 31K 218 218 Ik 318 2k 2
Solutions are harmonic maps. 3] [ | [ | [ [9e] [ | [ 9 [ | [ [ [ [+ [+

Theorem. If x € 002 — p, Is Lipschitz for (P(Y), W5) then there exists a
minimizer.
17/26

Lavenant (2019). Harmonic mappings valued in the Wasserstein space.



Some properties

Restrict to the case E(u) = / W(Vu).
Q

Proposition. The functional y — Tg gu (1) IS convex and L.s.c.

under assumption that 1 grows at least like |v|P for some p > 1.

Proposition. 7z gu(p.) = E(u) for any w.
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under assumption that 1 grows at least like |v|P for some p > 1.

Proposition. 7z gu(p.) = E(u) for any w.

Consequence: Tz gy < Tg. Equal if Q@ = [0,1] is a segment!
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Some properties

Restrict to the case E(u) = / W(Vu).
Q

Proposition. The functional y — Tg gu (1) IS convex and Ls.c.

under assumption that 1 grows at least like |v|P for some p > 1.

Proposition. 7z gu(p.) = E(u) for any w. Y

Consequence: g rpu < Tg.
k» If equal then Vu(x) = v(x,u(x)) for Q-a.e. wu.

> Should be different in general
18/26



1 - The Lagrangian lifting or optimal
transport with an infinity of marginals

2 - The Eulerian lifting

3 - Understanding the difference:
localization of functionals
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Localization of functionals

Previously E dependsonu: FE(u) = / W(Vu).
Q2
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Localization of functionals

Previously E dependsonu: FE(u) = / W(Vu).
Q2

Localized version: E(u, A) = /A W(Vu)

map Openset A C Q) s

20/26

Dal Maso (2012). An introduction to I"-convergence.
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Previously E dependsonu: FE(u) = / W(Vu).
Q2

Localized version: E(u, A) = /A W(Vu)

map Openset A C (?

Definition. A localized functional £ is
e convex and Ls.c. If (-, A) Is convex and L.s.c for any A.
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Localization of functionals

Previously E dependsonu: FE(u) = / W(Vu).
Q2

Localized version: E(u, A) = /A W(Vu)

map Openset A C Q) s

Definition. A localized functional E is

e convex and Ls.c. If (-, A) Is convex and L.s.c for any A.
e local if £(u, A) only depends on the restriction of u to A.
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Localization of functionals

Previously E dependsonu: FE(u) = / W(Vu).
Q2

Localized version: E(u, A) = /A W(Vu) i

map Openset A C Q)

Definition. A localized functional £ is
e convex and Ls.c. If (-, A) Is convex and L.s.c for any A.

e local if £(u, A) only depends on the restriction of u to A.
e additive if for any u, A;, A5 with A;, A, disjoint:

E(u, Ay UAy) = E(u, A1) + E(u, As).

Dal Maso (2012). An introduction to I"-convergence.

2

Possible to
extend to
countably
additive

20/26



For the Eulerian lifting

Under assumption that 17 grows at least like |v|? for some p > 1.

The functional E(u,A):/ W(Vu)
A

is convex, L.s.c., local and a countably additive.
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For the Eulerian lifting

Under assumption that 17 grows at least like |v|? for some p > 1.

The functional E(u,A):/ W(Vu)
A

is convex, L.s.c., local and a countably additive.

Localized Eulerian lifting:

\

Te Ba(p, A) = min < / W(v(x,y))dus(y)de st. Vypu +divy(vp) =0
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For the Lagrangian lifting

Localized version:

(

Tl 4) = inf 3 [ B(u, A)dQ(u) : Q & TI(y)
Q@ | JLox,y,m)

T is local if E is local.

\
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Localized version:

( )

Tl 4) = inf 3 [ E(u, A)dQ(u) : Q € Tl(y1) b
Q@ | JLox,y,m)

T is local if E is local.

/

superadditive is sufficient

Proposition. If F is additive, then 75 is superadditive.

(But not additive)

Te(p, A1 U Az) > Te(p, A1) + Te(p, A2)
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Counterexample for the Lagrangian lifting

) gl 5 If £(u, A) < 400 then u
@ u @ |ut‘ dt  continuous over A.
1
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Counterexample for the Lagrangian lifting

' 1 .19 5, IfE(u,A) < +oothenu
S E(u, A) = 5/ 0| dt continuous over A.
St !
Complex square root
Define - 0z +0_/z

3d visualization

Q/F
7
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Counterexample for the Lagrangian lifting
A A 1 1 .19 If EF(u, A) < 400 then u
U > E(u, A) = §/A|ut‘ dt continuous over A.
1
> Complex square root
Define > 8w+ 0_ sz
2

M

If A notdenseinS!
1
Te(p, A) < g\f‘”

gl Slope 1/2

De Lellis and Spadaro (2011). Q-valued functions revisited.
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Counterexample for the Lagrangian lifting

If EF(u, A) < 400 then u
/|ut\2d

contlnuous over A.
Complex square root
Define 8z +0_ sz
/ 2

[z

1 If A notdenseinS! Te(p,S') = +oc.
S 1 No continuous selection of the
Te(p, A) < g‘A| complex square root exists.

Thus Tz (u, -) 1s not additive.
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Counterexample for the Lagrangian lifting

If EF(u, A) < 400 then u
/Wd

contlnuous over A.
Complex square root

Define 8z +0_
O 9
If A notdenseinS! Te(p,S') = +oc.

No continuous selection of the

Te(1, A) < g‘A| complex square root exists.
/4 Thus Tz(u, -) 1s not additive.

gl e Extension to smoothed version.
e Extension to maps R? — R2.
De Lellis and Spadaro (2011). Q-valued functions revisited.
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Optimality of the Eulerian lifting

Theorem. For W : R4¢ — [0, +o0] convex, approximatively radial, define

E(u,A):/AW(Vu)

Then the Eulerian lifting 7z gy IS the largest 7 convex, L.s.c., subadditive,
Increasing and inner regular such that 7 (u,, A) = E(u, A).

Te(p, A1 U Az) < Te(p, A1) + Te(p, A2)
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Idea of the proof

If Te(1) = Te gu(p) then for Q-a.e. map u : Q — R?
() optimal for 7%

Vu(x) =v(x,u(x))

voptimal in Tg gu

X Incompatibility in general
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Idea of the proof

If Te(1) = Te gu(p) then for Q-a.e. map u : Q — R?
() optimal for 7%

Vu(x) =v(x,u(x))

voptimal in Tg gu

X Incompatibility in general

Lemma. If v Is smooth, for A C () starshaped,
TE (,U, A) S TE,Eul(,u, A) —+ C’\A[diam(A).

Regularize (i, v), cut Q in pieces Ay, ..., A, of diameters ¢,
T e(p, Q) < Z Te(p, A;) < Z TE Bul(p, Ai) + Cem(A;) < Teru(p, Q) + Ce.

J i 25/26




Conclusion

Question. What is the largest convex and L.s.c.
functional 7 : L°(X,P(Y), m) — [0, +oc] such that
T () = E(u) for all u?
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Conclusion

Question. What is the largest convex and L.s.c.
functional 7 : L°(X,P(Y), m) — [0, +oc] such that
T () = E(u) for all u?

Answers: Tera < Tr (for E(u) = [ W(Vu))

Eulerian formulation, subadditive envelope Multimarginal optimal transport

Open question. Define E(u /W (V2u) for W convex. What is the

subadditive envelope in this case?

Thank you for your attention

Loewenhauser and Lellmann (2018). Functional lifting for variational problems with higher-order regularization. 26 /26
Vogt and Lellmann (2019). Functional liftings of vectorial variational problems with Laplacian regularization.



