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f given
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Lifting of functionals defined on maps

X

Y

x

u→ E(u) ∈ [0,+∞]

µx

µ→ TE(µ) ∈ [0,+∞]

Example:
µ : X → P(Y )

Given

Looking for

E(u) =

∫
X

f(x, u(x)) dx

TE(µ) =
∫
X

(∫
Y

f(x, y) dµx(y)

)
dx

f given
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Lifting of functionals defined on maps

X

Y

x

u→ E(u) ∈ [0,+∞] E(u) =
1

2

∫
X

|∇u(x)|2 dx

µx

µ→ TE(µ) ∈ [0,+∞] ???

• “Lagrangian” answer TE
• “Eulerian” answer TE,Eul

Example:
µ : X → P(Y )

Today

Given

Looking for
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Lifting of the action

E(u) =
1

2

∫ 1

0

|u̇t|2 dtX = [0, 1],

E minimized for (constant
speed) geodesics
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Lifting of the action

E(u) =
1

2

∫ 1

0

|u̇t|2 dtX = [0, 1],

E minimized for (constant
speed) geodesics

Minimizers of TE are geodesics (for an
optimal transport geometry)
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Lifting of the Dirichlet energy

E(u) =

∫
|∇u(x)|2 dx

E minimized for harmonic maps
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Lifting of the Dirichlet energy

E(u) =

∫
|∇u(x)|2 dx

E minimized for harmonic maps

Minimizers of the Eulerian lifting of
the Dirichlet energy are harmonic
measure-valued maps.

Lavenant (2019). Harmonic mappings valued in the Wasserstein space.

Brenier (2003). Extended Monge-Kantorovich theory.
Solomon, Guibas and Butscher (2013). Dirichlet energy for analysis and synthesisof soft maps.
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Why? map denoising, in imaging

E(u) =

∫
W (∇u(x)) dx+

∫
f(x, u(x)) dxminimize

Vogt, Haase, Bednarski and Lellmann (2020). On the connection between dynamical optimal transport and functional lifting.
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Why? map denoising, in imaging

E(u) =

∫
W (∇u(x)) dx+

∫
f(x, u(x)) dx

Regularization

data fitting, like
f(x, u(x)) = |u(x)− u(x)|2

u

X

Y

minimize

Vogt, Haase, Bednarski and Lellmann (2020). On the connection between dynamical optimal transport and functional lifting.
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Codomain of u manifold, or f non
convex→ convexification.
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Why? map denoising, in imaging

E(u) =

∫
W (∇u(x)) dx+

∫
f(x, u(x)) dx

Regularization

data fitting, like
f(x, u(x)) = |u(x)− u(x)|2

u

X

Y

minimize

Optimal u

Data really measure-valued:
Magnetic Resonance
Imaging: distributions of
directions, in P(S2)

Codomain of u manifold, or f non
convex→ convexification.

Vogt and Lellmann (2018). Measure-valued variational models with applications todiffusion-weighted imaging.
Vogt, Haase, Bednarski and Lellmann (2020). On the connection between dynamical optimal transport and functional lifting.
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The link with optimal transport

y1
y2

Cost c(y1, y2)

Y Y

Simpler question: c : Y × Y → [0,+∞]

Savaré and Sodini (2022). A simple relaxation approach to duality for Optimal Transport problems in completely regular spaces.
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The link with optimal transport

Y Y

Simpler question: c : Y × Y → [0,+∞]
Question: how to extend c into
Tc : P(Y )× P(Y ) → [0,+∞]

µ1 µ2

???

Savaré and Sodini (2022). A simple relaxation approach to duality for Optimal Transport problems in completely regular spaces.
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The link with optimal transport

Y Y

Simpler question: c : Y × Y → [0,+∞]
Question: how to extend c into
Tc : P(Y )× P(Y ) → [0,+∞]

µ1 µ2

Tc(µ1, µ2) = min
π

{∫
Y×Y

c(y1, y2)π(dy1, dy2) : π ∈ Π(µ1, µ2)

}
Probabilities on Y × Y with
marginals µ1, µ2.π

Savaré and Sodini (2022). A simple relaxation approach to duality for Optimal Transport problems in completely regular spaces.

π(A× Y ) = µ1(A); π(Y ×B) = µ2(B);
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The link with optimal transport

Y Y

Simpler question: c : Y × Y → [0,+∞]
Question: how to extend c into
Tc : P(Y )× P(Y ) → [0,+∞]

µ1 µ2

Tc(µ1, µ2) = min
π

{∫
Y×Y

c(y1, y2)π(dy1, dy2) : π ∈ Π(µ1, µ2)

}
Theorem. Tc is the largest convex and lower semi continuous functional
on P(Y )× P(Y ) such that Tc(δy1 , δy2) = c(y1, y2) for any y1, y2.
w.r.t. narrow convergence if c l.s.c. and, e.g. Y polish space

Probabilities on Y × Y with
marginals µ1, µ2.π

Savaré and Sodini (2022). A simple relaxation approach to duality for Optimal Transport problems in completely regular spaces.
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Today’s question

(X,m)

Y

E : L0(X,Y,m) → [0,+∞]

u

measure on X

Maps u : X → Y , equivalent if equal m-a.e.

u(x) ∈ Y

x
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Maps u : X → Y , equivalent if equal m-a.e.µx ∈ P(Y )
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Today’s question

(X,m)

Y

E : L0(X,Y,m) → [0,+∞]

u

Want to extend to L0(X,P(Y ),m)

Define µu : x 7→ δu(x).

measure on X

Maps u : X → Y , equivalent if equal m-a.e.

u(x) ∈ Y

µx ∈ P(Y )

x
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Today’s question

(X,m)

Y

E : L0(X,Y,m) → [0,+∞]

u

Want to extend to L0(X,P(Y ),m)

Define µu : x 7→ δu(x).

Question. What is the largest convex and lower semi continuous functional

measure on X

Maps u : X → Y , equivalent if equal m-a.e.

T : L0(X,P(Y ),m) → [0,+∞]

such that T (µu) = E(u) for all u? (for which topology?)

u(x) ∈ Y

µx ∈ P(Y )

x

… …
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1 - The Lagrangian lifting or optimal
transport with an infinity of marginals

2 - The Eulerian lifting

3 - Understanding the difference:
localization of functionals
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1 - The Lagrangian lifting or optimal
transport with an infinity of marginals

2 - The Eulerian lifting

3 - Understanding the difference:
localization of functionals

X,Y polish (metric, complete, separable) spaces.
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Optimal transport with several marginals

y1

y2

Y

Transport problem with N marginals: c : Y N → [0,+∞]

yN−1

yN

Y

…

cost c(y1, . . . , yN )
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Optimal transport with several marginals

Y

Transport problem with N marginals: c : Y N → [0,+∞]

Question: how to extend c
into Tc : P(Y )N → [0,+∞]

µ1

µN

???

Y

…

µ2

µN−1
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Optimal transport with several marginals

Y

Transport problem with N marginals: c : Y N → [0,+∞]

Question: how to extend c
into Tc : P(Y )N → [0,+∞]

µ1

µN

Tc(µ1, . . . , µN ) = min
π

{∫
Y N

c(y1, . . . , yN )π(dy1, . . . , dy2)

Probabilities on Y N with
marginals µ1, . . . , µN

π
Y

…

µ2

µN−1

: π ∈ Π(µ1, . . . , µN )

}

Largest convex l.s.c. such that Tc(δy1
, . . . , δyN

) = c(y1, . . . , yN ).
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Optimal transport with several marginals

Y

Transport problem with N marginals: c : Y N → [0,+∞]

Question: how to extend c
into Tc : P(Y )N → [0,+∞]

µ1

µN

Tc(µ1, . . . , µN ) = min
π

{∫
Y N

c(y1, . . . , yN )π(dy1, . . . , dy2)

Probabilities on Y N with
marginals µ1, . . . , µN

π
Y

…

µ2

µN−1

: π ∈ Π(µ1, . . . , µN )

}

Idea: take limit N → +∞: indexing set {1, . . . , N} becomes X
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Optimal transport with several marginals

Transport problem with N marginals: c : Y N → [0,+∞]

Tc(µ1, . . . , µN ) = min
π

{∫
Y N

c(y1, . . . , yN )π(dy1, . . . , dy2)

π

: π ∈ Π(µ1, . . . , µN )

}

Idea: take limit N → +∞: indexing set {1, . . . , N} becomes X

Y N becomes X → Y ,
and c becomes E

π becomes Q probability
on maps X → Y .

µ1, . . . , µN ∈ P(Y )N

becomes
µ : X → P(Y )
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Maps of measures and measures on maps

(X,m)

Y

µx ∈ P(Y )

… …
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Maps of measures and measures on maps

(X,m)

Y

View µ as measure on X × Y by∫
X×Y

φ dµ =

∫
X

(∫
Y

φ(x, y) dµx(y)

)
dm(x)
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Maps of measures and measures on maps

(X,m)

Y

View µ as measure on X × Y by∫
X×Y

φ dµ =

∫
X

(∫
Y

φ(x, y) dµx(y)

)
dm(x)

Theorem. (disintegration). As sets,
L0(X,P(Y ),m) coincides with measures on
X × Y whose first marginal is m.
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Maps of measures and measures on maps

(X,m)

Y

View µ as measure on X × Y by∫
X×Y

φ dµ =

∫
X

(∫
Y

φ(x, y) dµx(y)

)
dm(x)

Theorem. (disintegration). As sets,
L0(X,P(Y ),m) coincides with measures on
X × Y whose first marginal is m.

Recall: µu : x 7→ δu(x).

µu
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Maps of measures and measures on maps

(X,m)

Y

View µ as measure on X × Y by∫
X×Y

φ dµ =

∫
X

(∫
Y

φ(x, y) dµx(y)

)
dm(x)

Theorem. (disintegration). As sets,
L0(X,P(Y ),m) coincides with measures on
X × Y whose first marginal is m.

Recall: µu : x 7→ δu(x).

Definition. Q ∈ P(L0(X,Y,m)) belongs to Π(µ) if
µ =

∫
L0(X,Y,m)

µu dQ(u).

Proposition. Π(µ) if never empty (if X,Y polish spaces).

Q

(Intuition: if u ∼ Q
then u(x) ∼ µx for
m-a.e. x.)
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Multimarginal optimal transport with an infinity of marginals
• E : L0(X,Y,m) → [0,+∞] lower semi continuous,
• µ measure on X × Y with first marginal m.

TE(µ) = inf
Q

{∫
L0(X,Y,m)

E(u) dQ(u) : Q ∈ Π(µ)

}
.

Definition.
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Multimarginal optimal transport with an infinity of marginals
• E : L0(X,Y,m) → [0,+∞] lower semi continuous,
• µ measure on X × Y with first marginal m.

TE(µ) = inf
Q

{∫
L0(X,Y,m)

E(u) dQ(u) : Q ∈ Π(µ)

}
.

Definition.

Theorem.
• TE is always convex.
• Under additional assumption, it is the largest convex and l.s.c. functional
such that ∀u, TE(µu) = E(u)

see next slides

Narrow convergence onM+(X × Y )
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Idea of the proof

Any T convex l.s.c. such that T (µu) = E(u)
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Idea of the proof

Any T convex l.s.c. such that T (µu) = E(u)

T (µ) = T
(∫

L0

µu dQ(u)

)
Using def of Q ∈ Π(µ)
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Any T convex l.s.c. such that T (µu) = E(u)

T (µ) = T
(∫

L0

µu dQ(u)

)
≤

∫
L0

T (µu) dQ(u)

Using def of Q ∈ Π(µ)

Jensen
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Idea of the proof

Any T convex l.s.c. such that T (µu) = E(u)

T (µ) = T
(∫

L0

µu dQ(u)

)
≤

∫
L0

T (µu) dQ(u)

=

∫
L0

E(u)dQ(u)

 TE(µ)

Using def of Q ∈ Π(µ)

Jensen

Minimizing in Q ∈ Π(µ)
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Idea of the proof

Any T convex l.s.c. such that T (µu) = E(u)

T (µ) = T
(∫

L0

µu dQ(u)

)
≤

∫
L0

T (µu) dQ(u)

=

∫
L0

E(u)dQ(u)

 TE(µ)

Using def of Q ∈ Π(µ)

Jensen

Minimizing in Q ∈ Π(µ)

Left to do: prove that TE is lower semi continuous.
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Assumption on E

To guarantee existence of optimal Q ∈ Π(µ) and l.s.c. of TE .

Assumption.
E is l.s.c. and

u 7→ E(u)the functional

has compact sublevel sets in L0(X,Y,m).
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To guarantee existence of optimal Q ∈ Π(µ) and l.s.c. of TE .
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u 7→ E(u)

Think E(u) =
∫
|∇u|2

+

∫
X

ψ(u(x)) dm(x)the functional

has compact sublevel sets in L0(X,Y,m).

for any ψ : Y → [0,+∞) with compact sublevel sets,
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Assumption.
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Think E(u) =
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“Coercivity of E + Tightness of µ”’
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ψ(u(x)) dm(x)the functional
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Assumption on E

To guarantee existence of optimal Q ∈ Π(µ) and l.s.c. of TE .

Assumption.
E is l.s.c. and

u 7→ E(u)

Think E(u) =
∫
|∇u|2

“Coercivity of E + Tightness of µ”’

Remark. If X finite, no assumption needed on E besides l.s.c.

+

∫
X

ψ(u(x)) dm(x)the functional

has compact sublevel sets in L0(X,Y,m).

for any ψ : Y → [0,+∞) with compact sublevel sets,
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Curves of measures and measures on curves

([0, 1], dt)

Rq
E(u) =

∫ 1

0

|u̇t|p dt

The previous result holds and there exists an optimal Q.
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Curves of measures and measures on curves

([0, 1], dt)

Rq
E(u) =

∫ 1

0

|u̇t|p dt

Theorem. TE(µ) = min
v

{∫ 1

0

∫
Rq

|v(t, y)|p dµt(y)dt : ∂tµ+ divy(vµ) = 0

}
.

v(t, y)

Lisini (2007). Characterization of absolutely continuous curves in Wasserstein spaces.
Ambrosio, Gigli and Savaré (2008). Gradient flows in metric spaces and in the space of probability measures.

The previous result holds and there exists an optimal Q.
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Curves of measures and measures on curves

([0, 1], dt)

Rq
E(u) =

∫ 1

0

|u̇t|p dt

Theorem. TE(µ) = min
v

{∫ 1

0

∫
Rq

|v(t, y)|p dµt(y)dt : ∂tµ+ divy(vµ) = 0

}
.

v(t, y)

At optimality: u̇t = v(t, ut) for Q-a.e. u.
Lisini (2007). Characterization of absolutely continuous curves in Wasserstein spaces.
Ambrosio, Gigli and Savaré (2008). Gradient flows in metric spaces and in the space of probability measures.

The previous result holds and there exists an optimal Q.
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Curves of measures and measures on curves

([0, 1], dt)

Rq
E(u) =

∫ 1

0

|u̇t|p dt

Theorem. TE(µ) = min
v

{∫ 1

0

∫
Rq

|v(t, y)|p dµt(y)dt : ∂tµ+ divy(vµ) = 0

}
.

v(t, y)

At optimality: u̇t = v(t, ut) for Q-a.e. u.

E(u) =
∫ 1

0
|ü|2 for splines.

Lisini (2007). Characterization of absolutely continuous curves in Wasserstein spaces.
Ambrosio, Gigli and Savaré (2008). Gradient flows in metric spaces and in the space of probability measures.
Benamou, Gallouët, Vialard (2019). Second-order models for optimal transport and cubic splines on the Wasserstein space.
Chen, Conforti, Georgiou (2018). Measure-valued spline curves: An optimal transport viewpoint.

The previous result holds and there exists an optimal Q.
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1 - The Lagrangian lifting or optimal
transport with an infinity of marginals

2 - The Eulerian lifting

3 - Understanding the difference:
localization of functionals
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The Eulerian lifting
X = Ω ⊂ Rd with Lebesgue measure, Y = Rq , andW convex

E(u) =

∫
Ω

W (∇u(x))dx

Ω

Rqu

Vogt, Haase, Bednarski and Lellmann (2020). On the connection between dynamical optimal transport and functional lifting.
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The Eulerian lifting
X = Ω ⊂ Rd with Lebesgue measure, Y = Rq , andW convex

E(u) =

∫
Ω

W (∇u(x))dx

Definition. We define TE,Eul(µ) as

min
v

{∫
Ω

∫
Rq

W (v(x, y)) dµx(y)dx s.t. ∇xµ+ divy(vµ) = 0

}
Ω

Rqu

v : Ω× Rq → Rq×d “density of Jacobian matrix”.

Vogt, Haase, Bednarski and Lellmann (2020). On the connection between dynamical optimal transport and functional lifting.
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E(u) =
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Definition. We define TE,Eul(µ) as

min
v

{∫
Ω

∫
Rq

W (v(x, y)) dµx(y)dx s.t. ∇xµ+ divy(vµ) = 0

}
+

∫
Ω×Rq

f(x, y) dµx(y)dx

+

∫
Ω

f(x, u(x)) dx

Ω

Rqu

v : Ω× Rq → Rq×d “density of Jacobian matrix”.

Vogt, Haase, Bednarski and Lellmann (2020). On the connection between dynamical optimal transport and functional lifting.
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The Eulerian lifting
X = Ω ⊂ Rd with Lebesgue measure, Y = Rq , andW convex

E(u) =

∫
Ω

W (∇u(x))dx

Definition. We define TE,Eul(µ) as

min
v

{∫
Ω

∫
Rq

W (v(x, y)) dµx(y)dx s.t. ∇xµ+ divy(vµ) = 0

}
+

∫
Ω×Rq

f(x, y) dµx(y)dx

+

∫
Ω

f(x, u(x)) dx

Ω

Rqu

v : Ω× Rq → Rq×d “density of Jacobian matrix”.

Remark. To have a convex formulation: (µ, v) ↔ (µ, vµ).
Vogt, Haase, Bednarski and Lellmann (2020). On the connection between dynamical optimal transport and functional lifting.
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Example: harmonic maps valued in the Wasserstein space

E(u) =
1

2

∫
Ω

|∇u(x)|2 dx

Dirichlet problem.
min
µ

{TE,Eul(µ)

µx given for x ∈ ∂Ω}

Solutions are harmonic maps.

Lavenant (2019). Harmonic mappings valued in the Wasserstein space.
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Example: harmonic maps valued in the Wasserstein space

E(u) =
1

2

∫
Ω

|∇u(x)|2 dx

Dirichlet problem.
min
µ

{TE,Eul(µ)

µx given for x ∈ ∂Ω}

Theorem. If x ∈ ∂Ω → µx is Lipschitz for (P(Y ),W2) then there exists a
minimizer.

Solutions are harmonic maps.

Lavenant (2019). Harmonic mappings valued in the Wasserstein space.
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Some properties

Proposition. The functional µ→ TE,Eul(µ) is convex and l.s.c.

Proposition. TE,Eul(µu) = E(u) for any u.

under assumption thatW grows at least like |v|p for some p ≥ 1.

E(u) =

∫
Ω

W (∇u).Restrict to the case
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Some properties

Proposition. The functional µ→ TE,Eul(µ) is convex and l.s.c.

Proposition. TE,Eul(µu) = E(u) for any u.

under assumption thatW grows at least like |v|p for some p ≥ 1.

Consequence: TE,Eul ≤ TE .

E(u) =

∫
Ω

W (∇u).Restrict to the case

Equal if Ω = [0, 1] is a segment!
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Some properties

Proposition. The functional µ→ TE,Eul(µ) is convex and l.s.c.

Proposition. TE,Eul(µu) = E(u) for any u.

under assumption thatW grows at least like |v|p for some p ≥ 1.

Consequence: TE,Eul ≤ TE .

E(u) =

∫
Ω

W (∇u).Restrict to the case

If equal then ∇u(x) = v(x, u(x)) for Q-a.e. u.
Should be different in general

Ω
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1 - The Lagrangian lifting or optimal
transport with an infinity of marginals

2 - The Eulerian lifting

3 - Understanding the difference:
localization of functionals
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Localization of functionals

Previously E depends on u:

Ω

E(u) =

∫
Ω

W (∇u).
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Localization of functionals

Previously E depends on u:

Ω

A

map Open set A ⊆ Ω

Localized version:

Dal Maso (2012). An introduction to Γ-convergence.

E(u) =

∫
Ω

W (∇u).

E(u,A) =

∫
A

W (∇u)
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Localization of functionals
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Localization of functionals

Definition. A localized functional E is
• convex and l.s.c. if E(·, A) is convex and l.s.c for any A.
• local if E(u,A) only depends on the restriction of u to A.
• additive if for any u,A1, A2 with A1, A2 disjoint:

Previously E depends on u:

E(u,A1 ∪A2) = E(u,A1) + E(u,A2).

Ω

A1

A2

map Open set A ⊆ Ω

Localized version:

Dal Maso (2012). An introduction to Γ-convergence.

E(u) =

∫
Ω

W (∇u).

Possible to
extend to
countably
additive

E(u,A) =

∫
A

W (∇u)
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For the Eulerian lifting

E(u,A) =

∫
A

W (∇u)

Under assumption thatW grows at least like |v|p for some p ≥ 1.

is convex, l.s.c., local and a countably additive.

The functional
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For the Eulerian lifting

E(u,A) =

∫
A

W (∇u)

Under assumption thatW grows at least like |v|p for some p ≥ 1.

Localized Eulerian lifting:

TE,Eul(µ,A) = min
v

{∫
A

∫
Rq

W (v(x, y)) dµx(y)dx s.t. ∇xµ+ divy(vµ) = 0

}
for v : A× Rq → Rq×d.

is convex, l.s.c., local and a countably additive.

Proposition. This lifting is convex, l.s.c., local and a countably additive.

The functional
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For the Lagrangian lifting

TE(µ,A) = inf
Q

{∫
L0(X,Y,m)

E(u,A) dQ(u) : Q ∈ Π(µ)

}
.

Localized version:

TE is local if E is local.
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Ω
A1

A2

(But not additive)

TE is local if E is local.
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For the Lagrangian lifting

TE(µ,A) = inf
Q

{∫
L0(X,Y,m)

E(u,A) dQ(u) : Q ∈ Π(µ)

}
.

Localized version:

Proposition. If E is additive, then TE is superadditive.

TE(µ,A1 ∪A2) ≥ TE(µ,A1) + TE(µ,A2)

Ω
A1

A2

superadditive is sufficient

(But not additive)

TE is local if E is local.
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Counterexample for the Lagrangian lifting

S1
S1

u E(u,A) =
1

2

∫
A

|u̇t|2 dt

De Lellis and Spadaro (2011). Q-valued functions revisited.

If E(u,A) < +∞ then u
continuous over A.
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∫
A

|u̇t|2 dt

S1

µx →
δ√x + δ−

√
x

2

Define
Complex square root

µ

3d visualization

De Lellis and Spadaro (2011). Q-valued functions revisited.

S1

If E(u,A) < +∞ then u
continuous over A.
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u E(u,A) =
1

2

∫
A

|u̇t|2 dt

S1

µx →
δ√x + δ−

√
x

2

Define
Complex square root

A

Slope 1/2

TE(µ,A) ≤
1

8
|A|

If A not dense in S1

A

µ

De Lellis and Spadaro (2011). Q-valued functions revisited.

S1

If E(u,A) < +∞ then u
continuous over A.
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√
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Define
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TE(µ,A) ≤
1

8
|A|

If A not dense in S1 TE(µ, S1) = +∞.

No continuous selection of the
complex square root exists.

Thus TE(µ, ·) is not additive.

µ

De Lellis and Spadaro (2011). Q-valued functions revisited.
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continuous over A.
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|A|

If A not dense in S1 TE(µ, S1) = +∞.

No continuous selection of the
complex square root exists.

• Extension to smoothed version.
Thus TE(µ, ·) is not additive.

µ
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continuous over A.
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Counterexample for the Lagrangian lifting

S1
S1

u E(u,A) =
1

2

∫
A

|u̇t|2 dt

S1

µx →
δ√x + δ−

√
x

2

Define
Complex square root

TE(µ,A) ≤
1

8
|A|

If A not dense in S1 TE(µ, S1) = +∞.

No continuous selection of the
complex square root exists.

• Extension to smoothed version.
• Extension to maps R2 → R2.

Thus TE(µ, ·) is not additive.

µ

De Lellis and Spadaro (2011). Q-valued functions revisited.

S1

If E(u,A) < +∞ then u
continuous over A.
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Optimality of the Eulerian lifting

Theorem. ForW : Rqd → [0,+∞] convex, approximatively radial, define

E(u,A) =

∫
A

W (∇u)

Then the Eulerian lifting TE,Eul is the largest T convex, l.s.c., subadditive,
increasing and inner regular such that T (µu, A) = E(u,A).

TE(µ,A1 ∪A2) ≤ TE(µ,A1) + TE(µ,A2)

Ω

A1

A2
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Optimality of the Eulerian lifting

Theorem. ForW : Rqd → [0,+∞] convex, approximatively radial, define

E(u,A) =

∫
A

W (∇u) +

∫
A

f(x, u(x)) dx.

Then the Eulerian lifting TE,Eul is the largest T convex, l.s.c., subadditive,
increasing and inner regular such that T (µu, A) = E(u,A).

TE(µ,A1 ∪A2) ≤ TE(µ,A1) + TE(µ,A2)

Ω

A1

A2



25/26

Idea of the proof

Ω

If TE(µ) = TE,Eul(µ) then for Q-a.e. map u : Ω → Rq

∇u(x) = v(x, u(x))

v optimal in TE,Eul

Q optimal for TE

Incompatibility in general
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Idea of the proof

Ω

If TE(µ) = TE,Eul(µ) then for Q-a.e. map u : Ω → Rq

∇u(x) = v(x, u(x))

v optimal in TE,Eul

Q optimal for TE

Lemma. If v is smooth, for A ⊆ Ω starshaped,
TE(µ,A) ≤ TE,Eul(µ,A) + C|A|diam(A).

Regularize (µ, v), cut Ω in pieces A1, . . . , An of diameters ε,
T E(µ,Ω) ≤

∑
i

TE(µ,Ai) ≤
∑
i

TE,Eul(µ,Ai) + Cεm(Ai) ≤ TE,Eul(µ,Ω) + Cε.

A1
A2

. . .

Incompatibility in general
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Conclusion

Question. What is the largest convex and l.s.c. (for narrow convergence
onM+(X × Y )) functional T : L0(X,P(Y ),m) → [0,+∞] such that
T (µu) = E(u) for all u?
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Answers: (for E(u) =
∫
W (∇u))
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Vogt and Lellmann (2019). Functional liftings of vectorial variational problems with Laplacian regularization.
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Open question. Define E(u) =

∫
W (∇2u) forW convex. What is the

subadditive envelope in this case?
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Conclusion

Question. What is the largest convex and l.s.c. (for narrow convergence
onM+(X × Y )) functional T : L0(X,P(Y ),m) → [0,+∞] such that
T (µu) = E(u) for all u?

TE,Eul ≤ TE

Multimarginal optimal transportEulerian formulation, subadditive envelope

Thank you for your attention

Answers:

Vogt and Lellmann (2019). Functional liftings of vectorial variational problems with Laplacian regularization.
Loewenhauser and Lellmann (2018). Functional lifting for variational problems with higher-order regularization.

(for E(u) =
∫
W (∇u))

Open question. Define E(u) =

∫
W (∇2u) forW convex. What is the

subadditive envelope in this case?


