Wasserstein distance between Lévy measures with applications to Bayesian nonparametrics

Hugo Lavenant

Bocconi University

BNP13 - 13th International Conference on Bayesian Nonparametrics, Puerto Varas (Chile), October 27, 2022

Joint work with:

Marta Catalano

Antonio Lijoi

Igor Prünster

Joint work with:

Marta Catalano

Marta on Tuesday: optimal transport distance
 between Completely Random Measures to measure the impact of the prior.

Joint work with:

Igor Prünster

Marta Catalano

Antonio Lijoi

 Marta on Tuesday: optimal transport distance
 between Completely Random Measures to measure the impact of the prior.

Today: optimal transport distance between Completely Random Vectors to measure dependence in the prior.

Quantifying dependence

Quantifying dependence

Bayesian inference allows for borrowing of information

Quantifying dependence

Bayesian inference allows for borrowing of information

Goal: quantifying the amount of **dependence** between groups already present in the **prior**

Snapshot of the final result

Our contribution: an index of dependence quantifying dependence in the prior

Snapshot of the final result

Our contribution: an index of dependence quantifying dependence in the prior

Allow for comparision between different priors

1 - Context, general strategy

2 - Building the index with optimal transport

2 - Building the index with optimal transport

Specific setting: Completely Random Vectors

Specific setting: Completely Random Vectors

$$\begin{split} \tilde{\boldsymbol{\mu}} &= (\tilde{\mu}_1, \tilde{\mu}_2, \dots, \tilde{\mu}_d) \text{ Completely Random Vector} \\ X_{1,1}, X_{1,2}, \dots, X_{1,n_1} | \ \tilde{\boldsymbol{\mu}} \stackrel{\text{i.i.d.}}{\sim} \frac{\tilde{\mu}_1}{\tilde{\mu}_1(\mathbb{X})} \\ X_{2,1}, X_{2,2}, \dots, X_{2,n_2} | \ \tilde{\boldsymbol{\mu}} \stackrel{\text{i.i.d.}}{\sim} \frac{\tilde{\mu}_2}{\tilde{\mu}_2(\mathbb{X})} \\ \vdots \\ X_{d,1}, X_{d,2}, \dots, X_{d,n_d} | \ \tilde{\boldsymbol{\mu}} \stackrel{\text{i.i.d.}}{\sim} \frac{\tilde{\mu}_d}{\tilde{\mu}_d(\mathbb{X})} \end{split}$$

Definition (CRV). For all $A_1, \ldots, A_n \subseteq \mathbb{X}$ disjoints, the vectors $\tilde{\mu}(A_1), \ldots, \tilde{\mu}(A_n)$ are independent random vectors in \mathbb{R}^d_+ .

Specific setting: Completely Random Vectors

$$\tilde{\boldsymbol{\mu}} = (\tilde{\mu}_{1}, \tilde{\mu}_{2}, \dots, \tilde{\mu}_{d}) \text{ Completely Random Vector}$$

$$X_{1,1}, X_{1,2}, \dots, X_{1,n_{1}} | \tilde{\boldsymbol{\mu}} \stackrel{\text{i.i.d.}}{\sim} \frac{\tilde{\mu}_{1}}{\tilde{\mu}_{1}(\mathbb{X})}$$
Contains all dependence in the prior
$$X_{2,1}, X_{2,2}, \dots, X_{2,n_{2}} | \tilde{\boldsymbol{\mu}} \stackrel{\text{i.i.d.}}{\sim} \frac{\tilde{\mu}_{2}}{\tilde{\mu}_{2}(\mathbb{X})}$$

$$\vdots$$

$$X_{d,1}, X_{d,2}, \dots, X_{d,n_{d}} | \tilde{\boldsymbol{\mu}} \stackrel{\text{i.i.d.}}{\sim} \frac{\tilde{\mu}_{d}}{\tilde{\mu}_{d}(\mathbb{X})}$$

Definition (CRV). For all $A_1, \ldots, A_n \subseteq \mathbb{X}$ disjoints, the vectors $\tilde{\mu}(A_1), \ldots, \tilde{\mu}(A_n)$ are independent random vectors in \mathbb{R}^d_+ . For $A \subseteq \mathbb{X}$, the random variables $\tilde{\mu}_1(A), \ldots, \tilde{\mu}_d(A)$ may be dependent.

Lévy measure of a Completely Random Vector

Assumptions of **homogeneity** and no fixed atoms:

$$\tilde{\boldsymbol{\mu}} = \sum_{i=1}^{\infty} \tilde{\mathbf{J}}_i \delta_{Y_i}$$

where $(Y_i)_i \in \mathbb{X}$ (atoms) follow base measure P_0 ; and $(\tilde{\mathbf{J}}_i)_i$ (jumps) independent from $(Y_i)_i$ follow Poisson point cloud on \mathbb{R}^d_+ with intensity measure ν (Lévy measure).

 $u(C) \propto \text{observing a jump of}$ $size \in C_1 \text{ for } \tilde{\mu}_1 \text{ and } \in C_2 \text{ for}$ $\tilde{\mu}_2$

 $C = C_1 \times C_2$

Lévy measure of a Completely Random Vector

Assumptions of **homogeneity** and no fixed atoms:

$$\tilde{\boldsymbol{\mu}} = \sum_{i=1}^{\infty} \tilde{\mathbf{J}}_i \delta_{Y_i}$$

where $(Y_i)_i \in \mathbb{X}$ (atoms) follow base measure P_0 ; and $(\tilde{\mathbf{J}}_i)_i$ (jumps) independent from $(Y_i)_i$ follow Poisson point cloud on \mathbb{R}^d_+ with intensity measure ν (Lévy measure).

Lévy measure of a Completely Random Vector

Assumptions of **homogeneity** and no fixed atoms:

$$\tilde{\boldsymbol{\mu}} = \sum_{i=1}^{\infty} \tilde{\mathbf{J}}_i \delta_{Y_i}$$

where $(Y_i)_i \in \mathbb{X}$ (atoms) follow base measure P_0 ; and $(\tilde{\mathbf{J}}_i)_i$ (jumps) independent from $(Y_i)_i$ follow Poisson point cloud on \mathbb{R}^d_+ with intensity measure ν (Lévy measure).

A general method to construct an index

Ingredients:

- \tilde{Z} random object, \tilde{Z}^{co} "most dependent".
- $\mathcal D$ "discrepancy" between laws of random objects.

A general method to construct an index

Ingredients:

- \tilde{Z} random object, \tilde{Z}^{co} "most dependent".
- $\ensuremath{\mathcal{D}}$ "discrepancy" between laws of random objects.

To check: $\mathcal{D}(\tilde{Z}^{co}, \tilde{Z})$ is maximized when $\tilde{Z} = \tilde{Z}^{\perp}$ the most independent structure.

A general method to construct an index

Ingredients:

- \tilde{Z} random object, \tilde{Z}^{co} "most dependent".
- $\ensuremath{\mathcal{D}}$ "discrepancy" between laws of random objects.

To check: $\mathcal{D}(\tilde{Z}^{co}, \tilde{Z})$ is maximized when $\tilde{Z} = \tilde{Z}^{\perp}$ the most independent structure.

Then **define**:

$$\mathcal{I}(\tilde{Z}) = 1 - \frac{\mathcal{D}(\tilde{Z}^{co}, \tilde{Z})}{\mathcal{D}(\tilde{Z}^{co}, \tilde{Z}^{\perp})}.$$

It belongs to [0,1] and satisfies:

$$\mathcal{I}(\tilde{Z}^{\perp}) = 0, \qquad \mathcal{I}(\tilde{Z}^{co}) = 1.$$

Móri, and Székely (2020). The Earth Mover's correlation.

1 - Context, general strategy

2 - Building the index with optimal transport

Law of a Completly Random Vector $ilde{m \mu}$

(Classical) optimal transport

Definition. If ν^1, ν^2 probability distributions, the Wasserstein distance is

$$\mathcal{W}(\nu^{1},\nu^{2})^{2} = \min_{(X,Y)} \left\{ \mathbb{E}\left[\|X - Y\|^{2} \right] : X \sim \nu^{1} \text{ and } Y \sim \nu^{2} \right\}$$

(Classical) optimal transport

Definition. If ν^1, ν^2 probability distributions, the Wasserstein distance is

$$\mathcal{W}(\nu^{1},\nu^{2})^{2} = \min_{(X,Y)} \left\{ \mathbb{E}\left[\|X - Y\|^{2} \right] : X \sim \nu^{1} \text{ and } Y \sim \nu^{2} \right\}$$

$$= \min_{\gamma} \left\{ \iint \|x - y\|^2 \mathrm{d}\gamma(x, y) : \pi_1 \# \gamma = \nu^1 \text{ and } \pi_2 \# \gamma = \nu^2 \right\}$$

(Classical) optimal transport

Definition. If ν^1, ν^2 probability distributions, the Wasserstein distance is

 $\mathcal{W}(\nu^{1},\nu^{2})^{2} = \min_{(X,Y)} \left\{ \mathbb{E}\left[\|X - Y\|^{2} \right] : X \sim \nu^{1} \text{ and } Y \sim \nu^{2} \right\}$

 ν^2

$$= \min_{\gamma} \left\{ \iint \|x - y\|^2 \mathrm{d}\gamma(x, y) : \pi_1 \# \gamma = \nu^1 \text{ and } \pi_2 \# \gamma = \nu^2 \right\}$$
$$\leq \int \|x\|^2 \mathrm{d}\nu^1(x) + \int \|y\|^2 \mathrm{d}\nu^2(y)$$

Extended Wasserstein distance

Definition. If ν^1, ν^2 positive measures on $\mathbb{R}^d_+ \setminus \{0\}$ with **finite second moments**, the Wasserstein distance is

$$\mathcal{W}_*(\nu^1,\nu^2)^2 = \min_{\gamma} \left\{ \iint \|x-y\|^2 \mathrm{d}\gamma(x,y) : \pi_1 \#\gamma|_{\mathbb{R}^d_+ \setminus \{0\}} = \nu^1 \\ \text{and} \ \pi_2 \#\gamma|_{\mathbb{R}^d_+ \setminus \{0\}} = \nu^2 \right\}$$

with γ measure on $\mathbb{R}^{2d}_+ \setminus \{(0,0)\}.$

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions.

Guillen, Mou, Święch (2019). Coupling Lévy measures and comparison principles for viscosity solutions.

 ν^2

Extended Wasserstein distance

Definition. If ν^1, ν^2 positive measures on $\mathbb{R}^d_+ \setminus \{0\}$ with **finite second moments**, the Wasserstein distance is

$$\mathcal{W}_*(\nu^1,\nu^2)^2 = \min_{\gamma} \left\{ \iint \|x-y\|^2 \mathrm{d}\gamma(x,y) : \pi_1 \#\gamma|_{\mathbb{R}^d_+ \setminus \{0\}} = \nu^1 \\ \text{and} \ \pi_2 \#\gamma|_{\mathbb{R}^d_+ \setminus \{0\}} = \nu^2 \right\}$$

with γ measure on $\mathbb{R}^{2d}_+ \setminus \{(0,0)\}.$

Mass on $\mathbb{R}^{d}_{+,*} \times \{0\}$ and $\{0\} \times \mathbb{R}^{d}_{+,*}$: mass "destroyed" or "created" from the sink/reservoir (0,0).

Marta's talk: couple also the law of atoms for inhomogeneous CRM. Used to quantify impact of the prior.

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions.

Guillen, Mou, Święch (2019). Coupling Lévy measures and comparison principles for viscosity solutions.

Building the index

Building the index

First result. $\mathcal{W}_*(\nu^{co}, \nu)$ can be computed with 1d integrals of tail functions.

Second result. If ν^{co} has infinite mass, $\mathcal{W}_*(\nu^{co}, \nu)$ is maximized exactly for $\nu = \nu^{\perp}$.

Catalano, Lavenant, Lijoi, Prünster (2022+). A Wasserstein index of dependence.

Catalano, Lavenant, Lijoi, Prünster (2022+). A Wasserstein index of dependence.

Consequence. We have an index of dependence for homogeneous infinitely active completely random vectors without fixed atoms, with equal marginals and finite second moments.

Catalano, Lavenant, Lijoi, Prünster (2022+). A Wasserstein index of dependence.

Examples

Additive model

Parameter $z \in [0, 1]$, $\nu = (1-z)\nu^{\perp} + z\nu^{\rm co}$ 1 0.80.6 $\mathcal{I}(z)$ 0.4z= 2= 30.2d = 40 0.20.4 0.6 0.8 0 1 z $\mathcal{I}(z) \geq z$ [= Covariance if d = 2]

Examples

Additive model

Parameter $z \in [0,1]$,

$$\nu = (1-z)\nu^{\perp} + z\nu^{\rm cc}$$

 $\mathcal{I}(z) \geq z$ [= Covariance if d = 2]

Compound random measures

Parameter ϕ measures dependence

$$\nu(s_1, \dots, s_d) = \int_0^{+\infty} h^{\phi} \left(\frac{s_1}{u}, \dots, \frac{s_d}{u}\right) d\nu_*^{\phi}(u)$$

for well chosen h^{ϕ}, ν^{ϕ}_* .

Lijoi, Nipoti and Prünster (2014). Bayesian inference with dependent normalized completely random measures. Griffin and Leisen (2017). Compound random measures and their use in bayesian non-parametrics.

Examples

Additive model

Parameter $z \in [0, 1]$,

$$\nu = (1-z)\nu^{\perp} + z\nu^{\rm co}$$

Compound random measures

Parameter ϕ measures dependence

Conclusion

What is done:

- Wasserstein distance between Lévy measures.
- Index of dependence between Completely Random Vectors.

What's next?:

- Study dependence in the posterior.
- Use this distance for other purposes: measuring the impact of the prior, hypothesis testing, etc.

For this, need to extend the distance to couple both atoms and jumps, to Cox processes.

Conclusion

What is done:

- Wasserstein distance between Lévy measures.
- Index of dependence between Completely Random Vectors.

What's next?:

- Study dependence in the posterior.
- Use this distance for other purposes: measuring the impact of the prior, hypothesis testing, etc.

For this, need to extend the distance to couple both atoms and jumps, to Cox processes.

Thank you for your attention