Wasserstein distance between Lévy measures with applications to Bayesian nonparametrics

Hugo Lavenant

Bocconi University

BNP13-13th International Conference on Bayesian Nonparametrics, Puerto Varas (Chile), October 27, 2022

Joint work with:

Marta Catalano

Antonio Lijoi

Igor Prünster

Joint work with:

Optimal transport methods for
Bayesian model comparison
Marta Catalano

Joint work with Hugo Lavenant (Bocconi University)

Marta on Tuesday: optimal transport distance between Completely Random Measures to measure the impact of the prior.

Joint work with:

Marta Catalano

Antonio Lijoi

Igor Prünster

Marta on Tuesday: optimal transport distance between Completely Random Measures to measure the impact of the prior.
Today: optimal transport distance between Completely Random Vectors to measure dependence in the prior.

Quantifying dependence

Quantifying dependence

Bayesian inference allows for borrowing of information

Quantifying dependence

Bayesian inference allows for borrowing of information
Goal: quantifying the amount of dependence between groups already present in the prior

Snapshot of the final result

Our contribution: an index of dependence quantifying dependence in the prior

Snapshot of the final result

Our contribution: an index of dependence quantifying dependence in the prior

Allow for comparision between different priors

1 - Context, general strategy

2 - Building the index with optimal transport

2 - Building the index with optimal transport

Specific setting: Completely Random Vectors

(justified by partial exchangeability)

Specific setting: Completely Random Vectors

$\tilde{\boldsymbol{\mu}}=\left(\tilde{\mu}_{1}, \tilde{\mu}_{2}, \ldots, \tilde{\mu}_{d}\right)$ Completely Random Vector

$$
\begin{gathered}
X_{1,1}, X_{1,2}, \ldots, X_{1, n_{1}} \left\lvert\, \tilde{\boldsymbol{\mu}} \stackrel{\text { i.i.d. }}{\sim} \frac{\tilde{\mu}_{1}}{\tilde{\mu}_{1}(\mathbb{X})}\right. \\
X_{2,1}, X_{2,2}, \ldots, X_{2, n_{2}} \left\lvert\, \tilde{\boldsymbol{\mu}} \stackrel{\text { i.i.d. }}{\sim} \frac{\tilde{\mu}_{2}}{\tilde{\mu}_{2}(\mathbb{X})}\right. \\
\vdots \\
X_{d, 1}, X_{d, 2}, \ldots, X_{d, n_{d}} \left\lvert\, \tilde{\boldsymbol{\mu}} \stackrel{\text { i.i.d. }}{\sim} \frac{\tilde{\mu}_{d}}{\tilde{\mu}_{d}(\mathbb{X})}\right.
\end{gathered}
$$

Definition (CRV). For all $A_{1}, \ldots, A_{n} \subseteq \mathbb{X}$ disjoints, the vectors $\tilde{\boldsymbol{\mu}}\left(A_{1}\right), \ldots, \tilde{\boldsymbol{\mu}}\left(A_{n}\right)$ are independent random vectors in \mathbb{R}_{+}^{d}.

Specific setting: Completely Random Vectors

$\tilde{\boldsymbol{\mu}}=\left(\tilde{\mu}_{1}, \tilde{\mu}_{2}, \ldots, \tilde{\mu}_{d}\right)$ Completely Random Vector

$$
X_{1,1}, X_{1,2}, \ldots, X_{1, n_{1}} \left\lvert\, \tilde{\boldsymbol{\mu}} \stackrel{\text { i.i.d. }}{\sim} \frac{\tilde{\mu}_{1}}{\tilde{\mu}_{1}(\mathbb{X})}\right.
$$

Contains all dependence in the prior

$$
\begin{gathered}
X_{2,1}, X_{2,2}, \ldots, X_{2, n_{2}} \left\lvert\, \tilde{\boldsymbol{\mu}} \stackrel{\text { i.i.d. }}{\sim} \frac{\tilde{\mu}_{2}}{\tilde{\mu}_{2}(\mathbb{X})}\right. \\
\vdots \\
X_{d, 1}, X_{d, 2}, \ldots, X_{d, n_{d}} \left\lvert\, \tilde{\boldsymbol{\mu}} \stackrel{\text { i.i.d. }}{\sim} \frac{\tilde{\mu}_{d}}{\tilde{\mu}_{d}(\mathbb{X})}\right.
\end{gathered}
$$

Definition (CRV). For all $A_{1}, \ldots, A_{n} \subseteq \mathbb{X}$ disjoints, the vectors $\tilde{\boldsymbol{\mu}}\left(A_{1}\right), \ldots, \tilde{\boldsymbol{\mu}}\left(A_{n}\right)$ are independent random vectors in \mathbb{R}_{+}^{d}. For $A \subseteq \mathbb{X}$, the random variables $\tilde{\mu}_{1}(A), \ldots, \tilde{\mu}_{d}(A)$ may be dependent.

Lévy measure of a Completely Random Vector

Assumptions of homogeneity and no fixed atoms:

$$
\tilde{\boldsymbol{\mu}}=\sum_{i=1}^{\infty} \tilde{\mathbf{J}}_{i} \delta_{Y_{i}}
$$

where $\left(Y_{i}\right)_{i} \in \mathbb{X}$ (atoms) follow base measure P_{0}; and $\left(\tilde{\mathbf{J}}_{i}\right)_{i}$ (jumps) independent from $\left(Y_{i}\right)_{i}$ follow Poisson point cloud on \mathbb{R}_{+}^{d} with intensity measure ν (Lévy measure).
$\nu(C) \propto$ observing a jump of
size $\in C_{1}$ for $\tilde{\mu}_{1}$ and $\in C_{2}$ for
$\tilde{\mu}_{2}$

$C=C_{1} \times C_{2}$

Lévy measure of a Completely Random Vector

Assumptions of homogeneity and no fixed atoms:

$$
\tilde{\boldsymbol{\mu}}=\sum_{i=1}^{\infty} \tilde{\mathbf{J}}_{i} \delta_{Y_{i}}
$$

where $\left(Y_{i}\right)_{i} \in \mathbb{X}$ (atoms) follow base measure P_{0}; and $\left(\tilde{\mathbf{J}}_{i}\right)_{i}$ (jumps) independent from $\left(Y_{i}\right)_{i}$ follow Poisson point cloud on \mathbb{R}_{+}^{d} with intensity measure ν (Lévy measure).

Lévy measure of a Completely Random Vector

Assumptions of homogeneity and no fixed atoms:

$$
\tilde{\boldsymbol{\mu}}=\sum_{i=1}^{\infty} \tilde{\mathbf{J}}_{i} \delta_{Y_{i}}
$$

where $\left(Y_{i}\right)_{i} \in \mathbb{X}$ (atoms) follow base measure P_{0}; and $\left(\tilde{\mathbf{J}}_{i}\right)_{i}$ (jumps) independent from $\left(Y_{i}\right)_{i}$ follow Poisson point cloud on \mathbb{R}_{+}^{d} with intensity measure ν (Lévy measure).

Lévy measure of a Completely Random Vector

A general method to construct an index

Ingredients:

- \tilde{Z} random object, $\tilde{Z}^{\text {co "most dependent". }}$
- \mathcal{D} "discrepancy" between laws of random objects.

A general method to construct an index

Ingredients:

- \tilde{Z} random object, $\tilde{Z}^{\text {co " }}$ most dependent".
- \mathcal{D} "discrepancy" between laws of random objects.

To check: $\mathcal{D}\left(\tilde{Z}^{\mathrm{co}}, \tilde{Z}\right)$ is maximized when $\tilde{Z}=\tilde{Z}^{\perp}$ the most independent structure.

A general method to construct an index

Ingredients:

- \tilde{Z} random object, $\tilde{Z}^{\text {co " }}$ most dependent".
- \mathcal{D} "discrepancy" between laws of random objects.

Then define:

$$
\mathcal{I}(\tilde{Z})=1-\frac{\mathcal{D}\left(\tilde{Z}^{\mathrm{co}}, \tilde{Z}\right)}{\mathcal{D}\left(\tilde{Z}^{\mathrm{co}}, \tilde{Z}^{\perp}\right)}
$$

It belongs to $[0,1]$ and satisfies:

$$
\mathcal{I}\left(\tilde{Z}^{\perp}\right)=0, \quad \mathcal{I}\left(\tilde{Z}^{\mathrm{co}}\right)=1
$$

1 - Context, general strategy

2 - Building the index with optimal transport

How to measure discrepancy between Completly Random Vectors?

Law of a Completly Random Vector $\tilde{\mu}$

How to measure discrepancy between Completly Random Vectors?

Law of a Completly Random Vector $\tilde{\mu}$

Setwise
evaluation $\tilde{\boldsymbol{\mu}}(A)$.

How to measure discrepancy between Completly Random Vectors?

How to measure discrepancy between Completly Random Vectors?

How to measure discrepancy between Completly Random Vectors?

How to measure discrepancy between Completly Random Vectors?

How to measure discrepancy between Completly Random Vectors?

How to measure discrepancy between Completly Random Vectors?

How to measure discrepancy between Completly Random Vectors?

(Classical) optimal transport

Definition. If ν^{1}, ν^{2} probability distributions, the Wasserstein distance is
$\mathcal{W}\left(\nu^{1}, \nu^{2}\right)^{2}=\min _{(X, Y)}\left\{\mathbb{E}\left[\|X-Y\|^{2}\right]: X \sim \nu^{1}\right.$ and $\left.Y \sim \nu^{2}\right\}$

(Classical) optimal transport

Definition. If ν^{1}, ν^{2} probability distributions, the Wasserstein distance is

$$
\mathcal{W}\left(\nu^{1}, \nu^{2}\right)^{2}=\min _{(X, Y)}\left\{\mathbb{E}\left[\|X-Y\|^{2}\right]: X \sim \nu^{1} \text { and } Y \sim \nu^{2}\right\}
$$

$$
=\min _{\gamma}\left\{\iint\|x-y\|^{2} \mathrm{~d} \gamma(x, y): \pi_{1} \# \gamma=\nu^{1} \text { and } \pi_{2} \# \gamma=\nu^{2}\right\}
$$

(Classical) optimal transport

Definition. If ν^{1}, ν^{2} probability distributions, the Wasserstein distance is

$$
\mathcal{W}\left(\nu^{1}, \nu^{2}\right)^{2}=\min _{(X, Y)}\left\{\mathbb{E}\left[\|X-Y\|^{2}\right]: X \sim \nu^{1} \text { and } Y \sim \nu^{2}\right\}
$$

$$
=\min _{\gamma}\left\{\iint\|x-y\|^{2} \mathrm{~d} \gamma(x, y): \pi_{1} \# \gamma=\nu^{1} \text { and } \pi_{2} \# \gamma=\nu^{2}\right\}
$$

$$
\leq \int\|x\|^{2} \mathrm{~d} \nu^{1}(x)+\int\|y\|^{2} \mathrm{~d} \nu^{2}(y)
$$

Observation. Naively, makes sense if ν^{1}, ν^{2} have infinite mass but finite second moment.

Extended Wasserstein distance

Definition. If ν^{1}, ν^{2} positive measures on $\mathbb{R}_{+}^{d} \backslash\{0\}$ with finite second moments, the Wasserstein distance is

$$
\left.\begin{array}{ll}
\mathcal{W}_{*}\left(\nu^{1}, \nu^{2}\right)^{2}=\min _{\gamma}\left\{\iint\|x-y\|^{2} \mathrm{~d} \gamma(x, y):\right. & \left.\pi_{1} \# \gamma\right|_{\mathbb{R}_{+}^{d} \backslash\{0\}}=\nu^{1} \\
\text { with } \gamma \text { measure on } \mathbb{R}_{+}^{2 d} \backslash\{(0,0)\} . & \text { and }\left.\pi_{2} \# \gamma\right|_{\mathbb{R}_{+}^{d} \backslash\{0\}}=\nu^{2}
\end{array}\right\}\left\{\begin{array}{l}
\\
\text { w }
\end{array}\right.
$$

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions.

Extended Wasserstein distance

Definition. If ν^{1}, ν^{2} positive measures on $\mathbb{R}_{+}^{d} \backslash\{0\}$ with finite second moments, the Wasserstein distance is
$\begin{array}{l}\mathcal{W}_{*}\left(\nu^{1}, \nu^{2}\right)^{2}=\min _{\gamma}\left\{\iint\|x-y\|^{2} \mathrm{~d} \gamma(x, y):\right. \\ \left.\pi_{1} \# \gamma\right|_{\mathbb{R}_{+}^{d} \backslash\{0\}}=\nu^{1} \\ \text { with } \gamma \text { measure on } \mathbb{R}_{+}^{2 d} \backslash\{(0,0)\} .\end{array} \quad$ and $\left.\left.\left.\pi_{2} \# \gamma\right|_{\mathbb{R}_{+}^{d} \backslash\{0\}}=\nu^{2}\right\}\right\}, ~ l l$

> Marta's talk: couple also the law of atoms for inhomogeneous CRM. Used to quantify impact of the prior.

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions.

Building the index

Space of Lévy measure

 over \mathbb{R}_{+}^{d} having same marginals
$=\nu^{\perp}$
 Building the index

First result. $\mathcal{W}_{*}\left(\nu^{\mathrm{co}}, \nu\right)$ can be computed with 1d integrals of tail functions.

Second result. If ν^{co} has infinite mass, $\mathcal{W}_{*}\left(\nu^{\mathrm{co}}, \nu\right)$ is maximized exactly for $\nu=\nu^{\perp}$.

Space of Lévy measure

 over \mathbb{R}_{+}^{d} having same marginalsFirst result. $\mathcal{W}_{*}\left(\nu^{\mathrm{co}}, \nu\right)$ can be computed with 1d integrals of tail functions.

Second result. If $\nu^{\text {co }}$ has infinite mass, $\mathcal{W}_{*}\left(\nu^{\mathrm{co}}, \nu\right)$ is maximized exactly for $\nu=\nu^{\perp}$.

Define:

$$
\mathcal{I}(\nu)=1-\frac{\mathcal{W}_{*}\left(\nu^{\mathrm{co}}, \nu\right)^{2}}{\mathcal{W}_{*}\left(\nu^{\mathrm{co}}, \nu^{\perp}\right)^{2}} .
$$

Space of Lévy measure over \mathbb{R}_{+}^{d} having same marginals

It belongs to $[0,1]$ and satisfies:

$$
\mathcal{I}\left(\nu^{\perp}\right)=0, \quad \mathcal{I}\left(\nu^{\mathrm{co}}\right)=1 .
$$

$\$ \quad=\nu^{\perp} \quad$ Building the index

First result. $\mathcal{W}_{*}\left(\nu^{\mathrm{co}}, \nu\right)$ can be computed with 1d integrals of tail functions.

Second result. If ν^{co} has infinite mass, $\mathcal{W}_{*}\left(\nu^{\mathrm{co}}, \nu\right)$ is maximized exactly for $\nu=\nu^{\perp}$.

Define:

$$
\mathcal{I}(\nu)=1-\frac{\mathcal{W}_{*}\left(\nu^{\mathrm{co}}, \nu\right)^{2}}{\mathcal{W}_{*}\left(\nu^{\mathrm{co}}, \nu^{\perp}\right)^{2}} .
$$

Space of Lévy measure over \mathbb{R}_{+}^{d} having same marginals

It belongs to $[0,1]$ and satisfies:

$$
\mathcal{I}\left(\nu^{\perp}\right)=0, \quad \mathcal{I}\left(\nu^{\mathrm{co}}\right)=1
$$

Consequence. We have an index of dependence for homogeneous infinitely active completely random vectors without fixed atoms, with equal marginals and finite second moments.

Examples

Additive model
 Parameter $z \in[0,1]$,

$$
\nu=(1-z) \nu^{\perp}+z \nu^{\mathrm{co}}
$$

$\mathcal{I}(z) \geq z[=$ Covariance if $d=2]$

Examples

Additive model

Parameter $z \in[0,1]$,

$$
\nu=(1-z) \nu^{\perp}+z \nu^{\mathrm{co}}
$$

$\mathcal{I}(z) \geq z[=$ Covariance if $d=2]$

Compound random measures

Parameter ϕ measures dependence

$$
\begin{aligned}
& \nu\left(s_{1}, \ldots, s_{d}\right) \\
& \quad=\int_{0}^{+\infty} h^{\phi}\left(\frac{s_{1}}{u}, \ldots, \frac{s_{d}}{u}\right) \mathrm{d} \nu_{*}^{\phi}(u)
\end{aligned}
$$

for well chosen h^{ϕ}, ν_{*}^{ϕ}.

Lijoi, Nipoti and Prünster (2014). Bayesian inference with dependent normalized completely random measures.
Griffin and Leisen (2017). Compound random measures and their use in bayesian non-parametrics.

Examples

Additive model

Parameter $z \in[0,1]$,

$$
\nu=(1-z) \nu^{\perp}+z \nu^{\mathrm{co}}
$$

Conclusion

What is done:

- Wasserstein distance between Lévy measures.
- Index of dependence between Completely Random Vectors.

What's next?:

- Study dependence in the posterior.
- Use this distance for other purposes: measuring the impact of the prior, hypothesis testing, etc.

For this, need to extend the distance to couple both atoms and jumps, to Cox processes.

Conclusion

What is done:

- Wasserstein distance between Lévy measures.
- Index of dependence between Completely Random Vectors.

What's next?:

- Study dependence in the posterior.
- Use this distance for other purposes: measuring the impact of the prior, hypothesis testing, etc.

For this, need to extend the distance to couple both atoms and jumps, to Cox processes.

Thank you for your attention

