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Quantifying dependence

Bayesian inference allows for borrowing of information

Goal: quantifying the amount of dependence
between groups already present in the prior
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Snapshot of the final result

Our contribution: an index of dependence quantifying
dependence in the prior

Value of the index

Different
parametrized
models of prior
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Snapshot of the final result

Our contribution: an index of dependence quantifying
dependence in the prior

Allow for comparision between different priors

Value of the index

“Compound” with
parameter 3 has
same dependence
as “Additive” with
parameter 0.75.
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Specific setting: Completely Random Vectors
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| µ̃ i.i.d.∼ µ̃1

µ̃1(X)

X2,1, X2,2, . . . , X2,n2
| µ̃ i.i.d.∼ µ̃2

µ̃2(X)

Xd,1, Xd,2, . . . , Xd,nd
| µ̃ i.i.d.∼ µ̃d

µ̃d(X)

...

Contains all
dependence in the
prior

Definition (CRV). For all A1, . . . , An ⊆ X disjoints, the vectors
µ̃(A1), . . . , µ̃(An) are independent random vectors in Rd

+.
For A ⊆ X, the random variables µ̃1(A), . . . , µ̃d(A) may be
dependent. 4/12



Lévy measure of a Completely Random Vector
Assumptions of homogeneity and no fixed atoms:

C = C1 × C2

ν(C) ∝ observing a jump of
size ∈ C1 for µ̃1 and ∈ C2 for
µ̃2

µ̃ =
∞∑
i=1

J̃iδYi

where (Yi)i ∈ X (atoms) follow base measure P0; and (J̃i)i
(jumps) independent from (Yi)i follow Poisson point cloud
on Rd

+ with intensity measure ν (Lévy measure).
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Perfect dependence
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Perfect independence
µ̃1 ⊥ µ̃2

νco
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µ̃ =
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i=1

J̃iδYi

where (Yi)i ∈ X (atoms) follow base measure P0; and (J̃i)i
(jumps) independent from (Yi)i follow Poisson point cloud
on Rd

+ with intensity measure ν (Lévy measure).

Goal: distinguish
between these two
cases.

ν
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A general method to construct an index
Ingredients:
• Z̃ random object, Z̃co “most dependent”.
• D “discrepancy” between laws of random objects.

Laws of Z̃
Z̃co

Z̃

D(Z̃co, Z̃)

Móri, and Székely (2020). The Earth Mover’s correlation.
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Laws of Z̃
Z̃co

Z̃

To check: D(Z̃co, Z̃) is maximized when
Z̃ = Z̃⊥ the most independent structure.

Z̃⊥

Then define:

I(Z̃) = 1− D(Z̃co, Z̃)

D(Z̃co, Z̃⊥)
.

It belongs to [0, 1] and satisfies:

I(Z̃⊥) = 0, I(Z̃co) = 1.
Móri, and Székely (2020). The Earth Mover’s correlation.
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Vectors?

Law of a Completly Random Vector µ̃

Setwise
evaluation µ̃(A).

Problem: not tractable

Use Optimal transport

Under assumption same base
measure, characterized by Lévy
measure ν.

Problem: comparing measures
with different supports

Problem: ν has infinite massOptimal transport
theory for measures
with infinite mass

Catalano, Lijoi and Prünster (2021). Measuring dependence in the Wasserstein distance for Bayesian nonparametric models.

Upper bound
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(Classical) optimal transport

Definition. If ν1, ν2 probability distributions, the
Wasserstein distance is
W(ν1, ν2)2 = min

(X,Y )

{
E
[
∥X − Y ∥2

]
: X ∼ ν1 and Y ∼ ν2

}

8/12



(Classical) optimal transport

Definition. If ν1, ν2 probability distributions, the
Wasserstein distance is
W(ν1, ν2)2 = min

(X,Y )

{
E
[
∥X − Y ∥2

]
: X ∼ ν1 and Y ∼ ν2

}
= min

γ

{∫∫
∥x− y∥2dγ(x, y) : π1#γ = ν1 and π2#γ = ν2

}

γ

ν1

ν2

8/12
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Definition. If ν1, ν2 probability distributions, the
Wasserstein distance is
W(ν1, ν2)2 = min

(X,Y )

{
E
[
∥X − Y ∥2

]
: X ∼ ν1 and Y ∼ ν2

}
= min

γ

{∫∫
∥x− y∥2dγ(x, y) : π1#γ = ν1 and π2#γ = ν2

}

γ

ν1

ν2
≤

∫
∥x∥2dν1(x) +

∫
∥y∥2dν2(y)

Observation. Naively, makes sense if
ν1, ν2 have infinite mass but finite
second moment.
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Extended Wasserstein distance

Definition. If ν1, ν2 positive measures on Rd
+ \ {0} with

finite second moments, the Wasserstein distance is

W∗(ν
1, ν2)2 = min

γ

{∫∫
∥x− y∥2dγ(x, y) : π1#γ|Rd

+\{0} = ν1

and π2#γ|Rd
+\{0} = ν2

}
with γ measure on R2d

+ \ {(0, 0)}.

ν1

ν2

γ Mass on Rd
+,∗ × {0} and {0} × Rd

+,∗:
mass “destroyed” or “created” from
the sink/reservoir (0, 0).

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with
Dirichlet boundary conditions.
Guillen, Mou, Świȩch (2019). Coupling Lévy measures and comparison principles for viscosity solutions.
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}
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+ \ {(0, 0)}.

ν1

ν2

γ Mass on Rd
+,∗ × {0} and {0} × Rd

+,∗:
mass “destroyed” or “created” from
the sink/reservoir (0, 0).

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with
Dirichlet boundary conditions.
Guillen, Mou, Świȩch (2019). Coupling Lévy measures and comparison principles for viscosity solutions.

Marta’s talk: couple also the law of
atoms for inhomogeneous CRM.
Used to quantify impact of the prior.

9/12



Building the index

νco =

ν
W∗(ν

co, ν)

Space of Lévy measure
over Rd

+ having same
marginals

First result. W∗(ν
co, ν) can be computed

with 1d integrals of tail functions.

Catalano, Lavenant, Lijoi, Prünster (2022+). A Wasserstein index of dependence.
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with 1d integrals of tail functions.

Second result. If νco has infinite mass,
W∗(ν

co, ν) is maximized exactly for ν = ν⊥.

= ν⊥

Define:

Consequence. We have an index of dependence for homogeneous
infinitely active completely random vectors without fixed atoms,
with equal marginals and finite second moments.

I(ν) = 1− W∗(ν
co, ν)2
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Lijoi, Nipoti and Prünster (2014). Bayesian inference with dependent normalized completely random measures.

Examples
Additive model

Parameter z ∈ [0, 1],

ν = (1− z)ν⊥ + zνco

z

I(z)

I(z) ≥ z [ = Covariance if d = 2]
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Lijoi, Nipoti and Prünster (2014). Bayesian inference with dependent normalized completely random measures.
Griffin and Leisen (2017). Compound random measures and their use in bayesian non-parametrics.

Examples
Additive model Compound random measures

Parameter z ∈ [0, 1],

ν = (1− z)ν⊥ + zνco

z

I(z)

I(z) ≥ z [ = Covariance if d = 2]

Parameter ϕ measures dependence

=

∫ +∞

0

hϕ
(s1
u
, . . . ,

sd
u

)
dνϕ∗ (u)

ν(s1, . . . , sd)

for well chosen hϕ, νϕ∗ .

ϕ

I(ϕ)
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Model comparision
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Conclusion

What is done:
• Wasserstein distance between Lévy measures.
• Index of dependence between Completely Random Vectors.

What’s next?:
• Study dependence in the posterior.
• Use this distance for other purposes: measuring the impact of
the prior, hypothesis testing, etc.

For this, need to extend the distance to couple both atoms and
jumps, to Cox processes.
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Thank you for your attention
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