Measuring dependence with Wasserstein distances (in Bayesian Nonparametrics)

Hugo Lavenant

Bocconi University

Workshop "Emerging topics in applications of Optimal Transport", Zurich (Switzerland), June 8, 2023

Joint work with:

Marta Catalano

Antonio Lijoi

Igor Prünster

Joint work with:

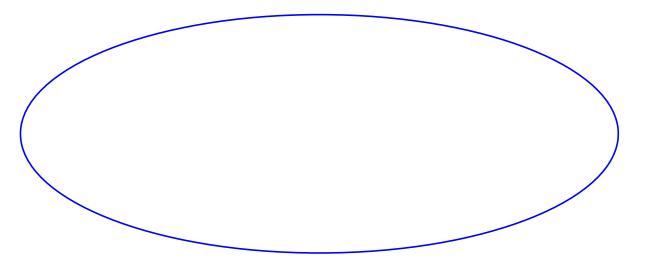
Marta Catalano

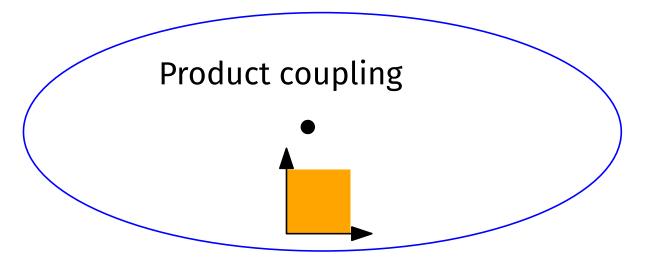
Antonio Lijoi

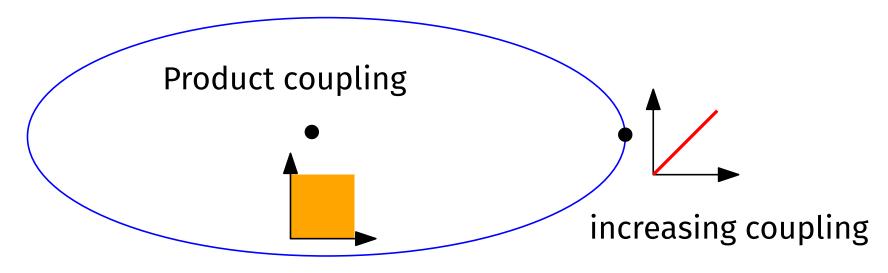
Igor Prünster

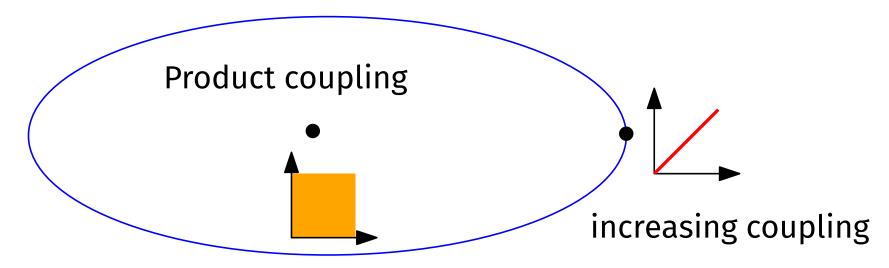
Disclaimers

I am not a (Bayesian) statistician. My background: mathematical analysis, optimal transport.

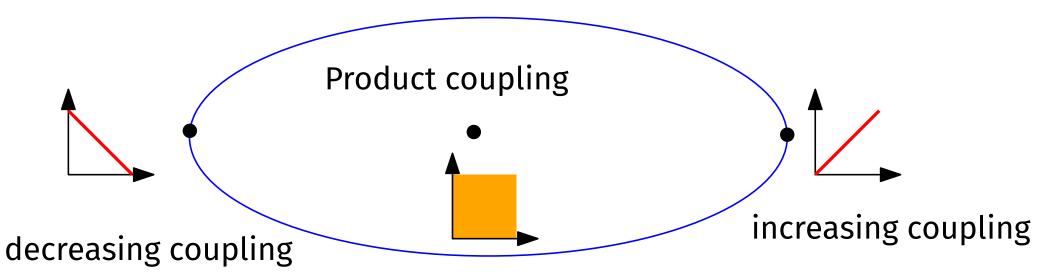




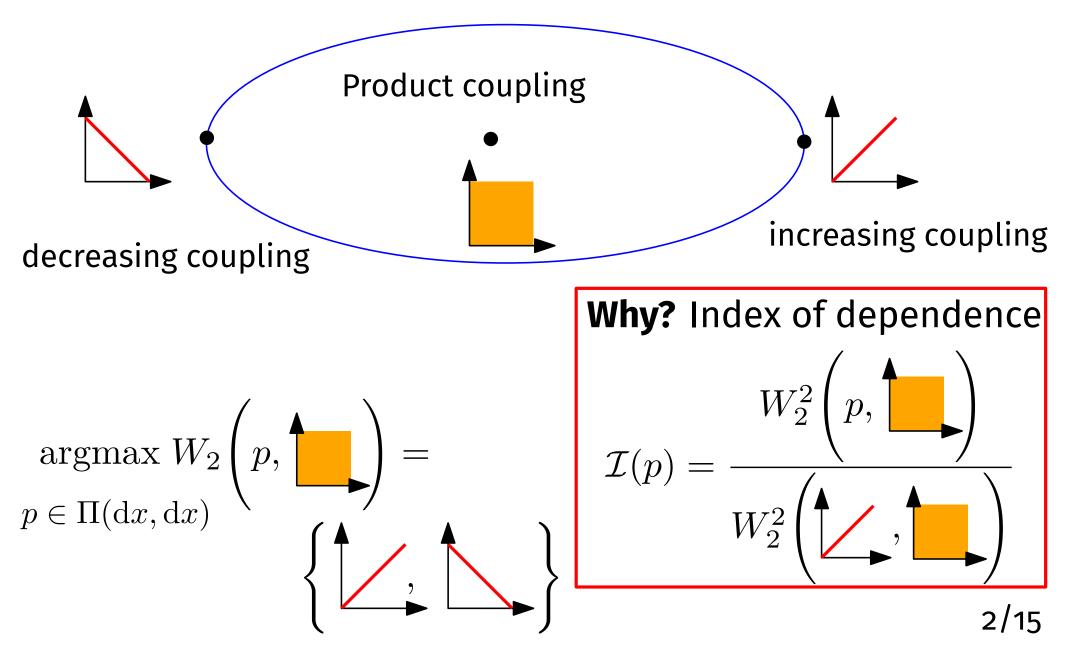




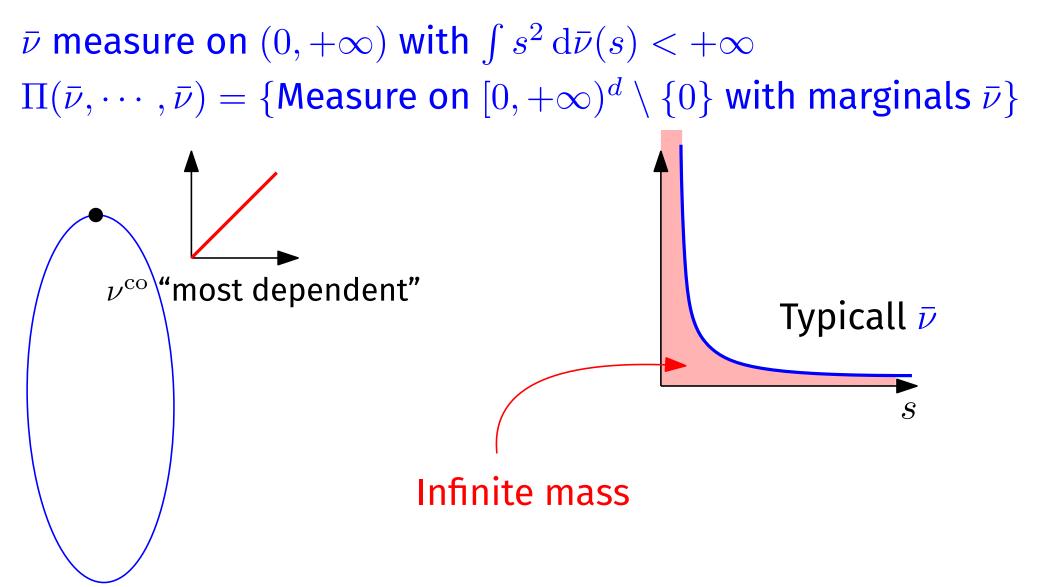
$$\operatorname{argmax} W_2\left(p, \textcircled{p}\right) = p \in \Pi(\mathrm{d}x, \mathrm{d}x)$$



 $\Pi(dx, dx) = \{ \text{probability on } [0, 1]^2 \text{ with uniform marginals} \}$

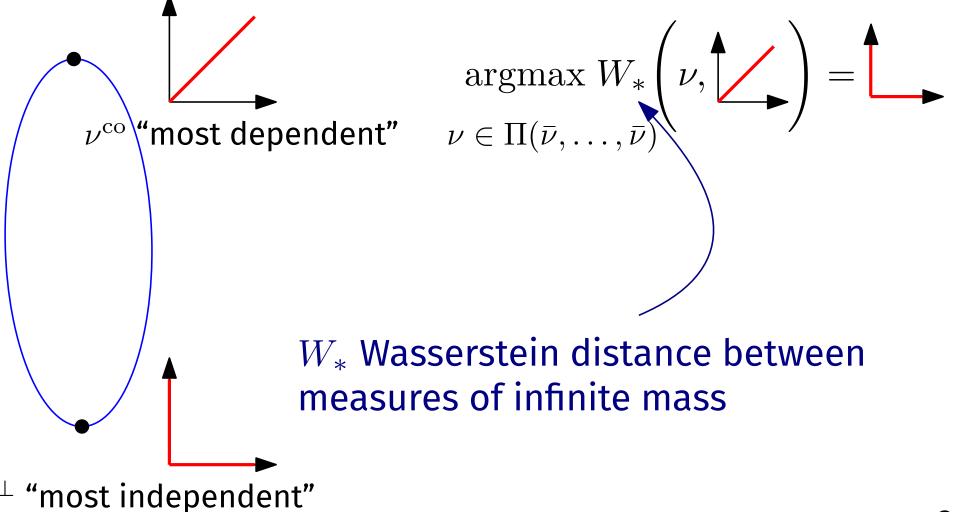


The problem I will solve



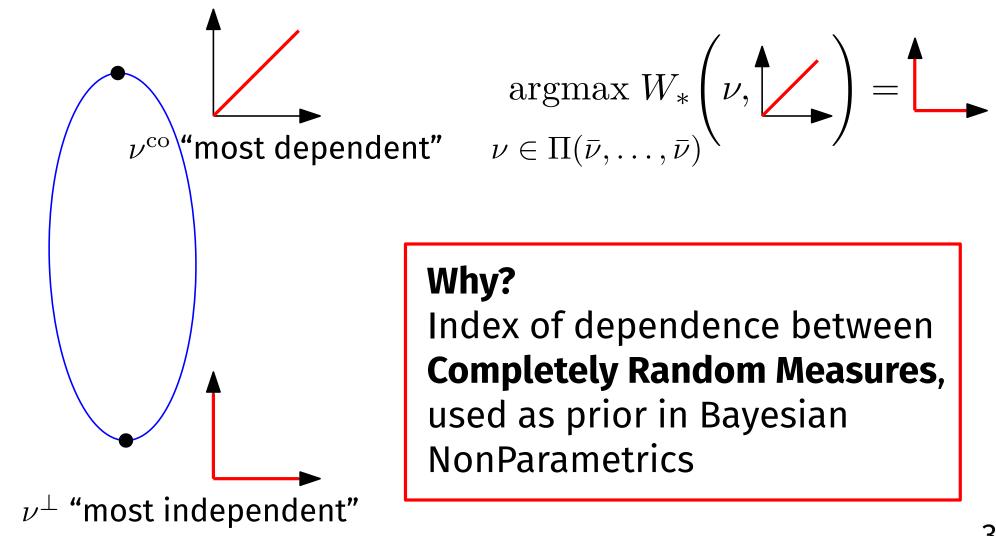
The problem I will solve

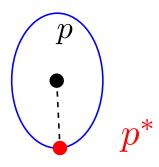
 $\bar{\nu}$ measure on $(0, +\infty)$ with $\int s^2 d\bar{\nu}(s) < +\infty$ $\Pi(\bar{\nu}, \cdots, \bar{\nu}) = \{\text{Measure on } [0, +\infty)^d \setminus \{0\} \text{ with marginals } \bar{\nu}\}$



The problem I will solve

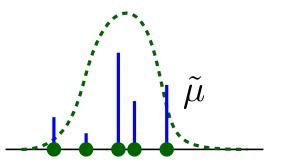
 $\bar{\nu}$ measure on $(0, +\infty)$ with $\int s^2 d\bar{\nu}(s) < +\infty$ $\Pi(\bar{\nu}, \cdots, \bar{\nu}) = \{\text{Measure on } [0, +\infty)^d \setminus \{0\} \text{ with marginals } \bar{\nu}\}$

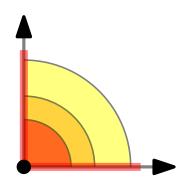




1 - Measuring dependence with Wasserstein distance

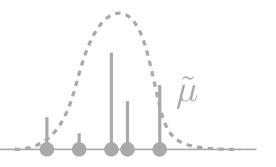
2 - Why look at Lévy intensities: link with completely random measures





3 - Extended Wasserstein distance and index of dependence

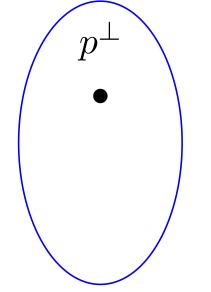
2 - Why look at Lévy intensities: link with completely random measures



3 - Extended Wasserstein distance and index of dependence

Dependence structure Π "most independent"

If \mathcal{D} measure of discrepancy on Π then $\mathcal{D}(p, p^{\perp})$ measure of dependence of p.



Móri, and Székely (2020). The Earth Mover's correlation.

Nies, Staudt, and Munk (2021). Transport dependency: Optimal transport based dependency measures. Mordant and Segers (2022). Measuring dependence between random vectors via optimal transport. Wiesel (2022). Measuring association with Wasserstein distances.

To solve: when is $\mathcal{D}(p, p^{\perp})$ maximized? say p^*

Dependence structure II
"most independent"If \mathcal{D} measure of discrepancy on
II then $\mathcal{D}(p, p^{\perp})$ measure of
dependence of p.

 p^{\perp} • p^{*}

"most dependent"

Móri, and Székely (2020). The Earth Mover's correlation.

Nies, Staudt, and Munk (2021). Transport dependency: Optimal transport based dependency measures. Mordant and Segers (2022). Measuring dependence between random vectors via optimal transport. Wiesel (2022). Measuring association with Wasserstein distances.

Dependence structure II
"most independent"If \mathcal{D} measure of discrepancy on
II then $\mathcal{D}(p, p^{\perp})$ measure of
dependence of p.

 p^* "most dependent"

To solve: when is $\mathcal{D}(p, p^{\perp})$ maximized? say p^*

Index of dependence $\mathcal{I}(p) = \frac{\mathcal{D}(p, p^{\perp})}{\mathcal{D}(p^*, p^{\perp})}$ $\mathcal{I}(p) \in [0, 1] \text{ and equal to 0 (resp. 1)}$ for p^{\perp} (resp. p^*)

Móri, and Székely (2020). The Earth Mover's correlation.

Nies, Staudt, and Munk (2021). Transport dependency: Optimal transport based dependency measures. Mordant and Segers (2022). Measuring dependence between random vectors via optimal transport. Wiesel (2022). Measuring association with Wasserstein distances.

Dependence structure Π If \mathcal{D} measure of discrepancy on"most independent"If \mathcal{D} measure of discrepancy on p^{\perp} Use the structure $D(p, p^{\perp})$ measure of p^{\perp} dependence of p.

 p^* "most dependent"

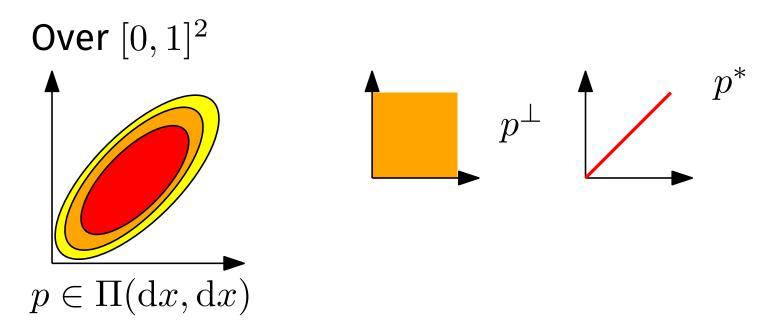
To solve: when is $\mathcal{D}(p, p^{\perp})$ maximized? say p^*

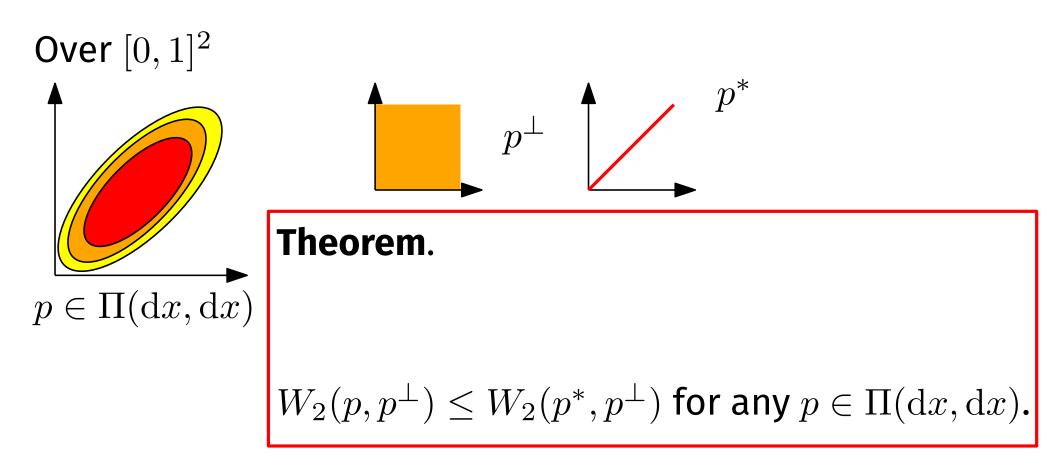
Index of dependence $\mathcal{I}(p) = \frac{\mathcal{D}(p, p^{\perp})}{\mathcal{D}(p^*, p^{\perp})}$ $\mathcal{I}(p) \in [0, 1] \text{ and equal to 0 (resp. 1)}$ for p^{\perp} (resp. p^*)

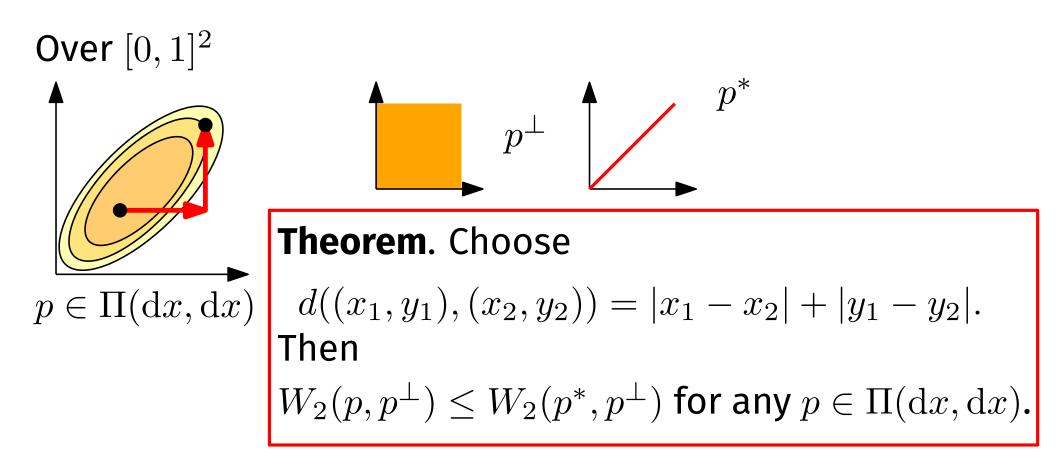
15

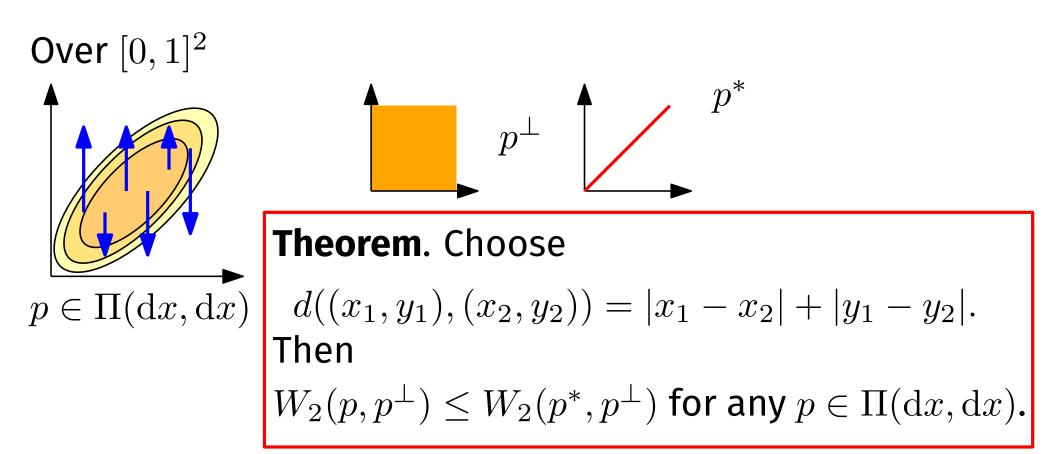
Alternative: if $\mathcal{D}(p^*, p)$ maximized at p^{\perp} then $\mathcal{I}(p) = 1 - \frac{\mathcal{D}(p^*, p)}{\mathcal{D}(p^*, p^{\perp})}$

Móri, and Székely (2020). The Earth Mover's correlation. Nies, Staudt, and Munk (2021). Transport dependency: Optimal transport based dependency measures. Mordant and Segers (2022). Measuring dependence between random vectors via optimal transport. Wiesel (2022). Measuring association with Wasserstein distances.







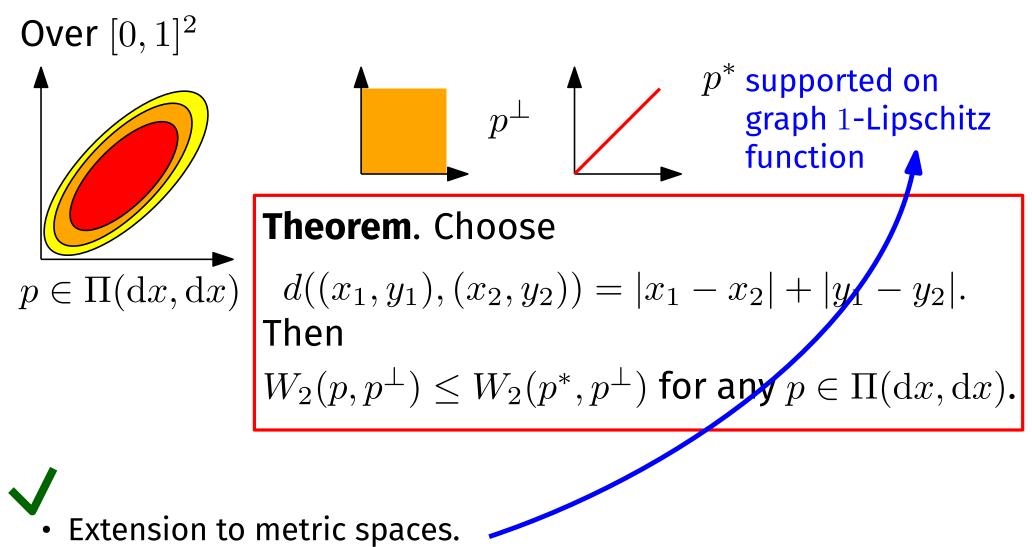


Proof. Send (x, y) onto (x, y') with y' independent of (x, y).

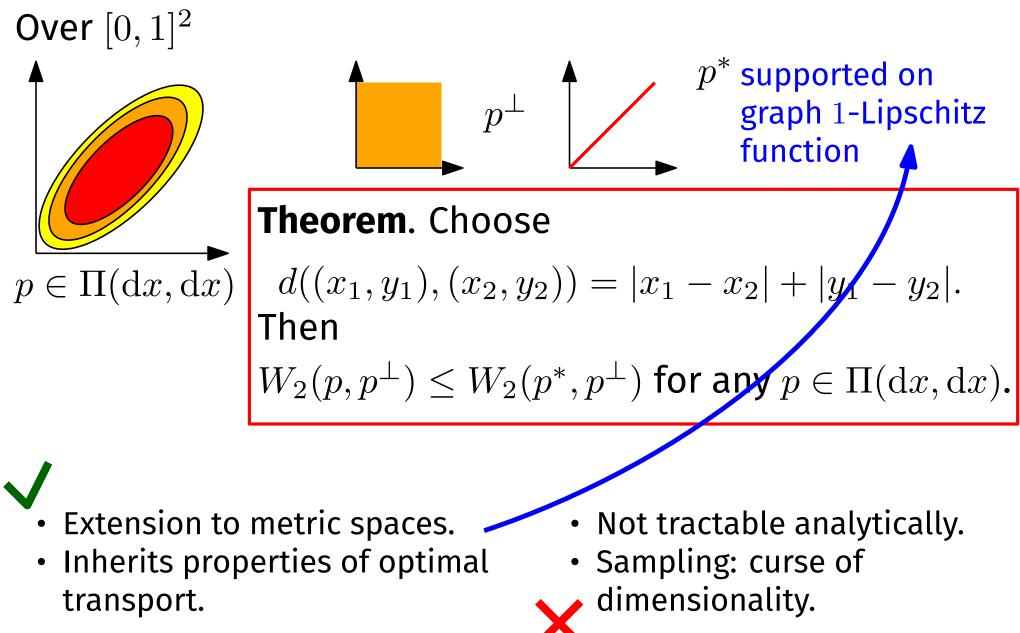
$$W_2(p, p^{\perp})^2 \leq \iint (y - y')^2 \, \mathrm{d}y \mathrm{d}y' = W_2(p^*, p^{\perp})^2.$$

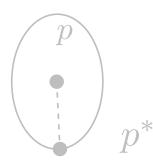
Explicit computation

5/15



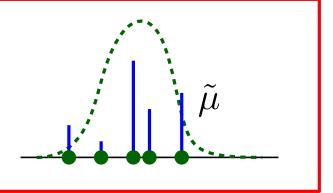
Inherits properties of optimal transport.





1 - Measuring dependence withWasserstein distance

2 - Why look at Lévy intensities: link with completely random measures



3 - Extended Wasserstein distance and index of dependence

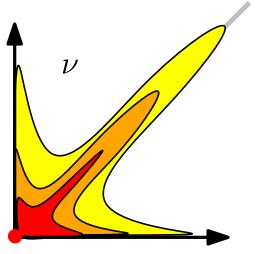
 $\bar{\nu}$ measure on $(0, +\infty)$ with $\int s^2 d\bar{\nu}(s) < +\infty$

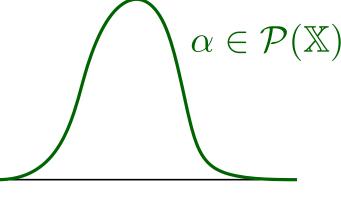
 $\Pi(\bar{\nu},\cdots,\bar{\nu}) = \{\text{Measure on } [0,+\infty)^d \setminus \{0\} \text{ with marginals } \bar{\nu}\}$

$$\operatorname{argmax} W_*\left(\nu, \checkmark\right) = \checkmark$$

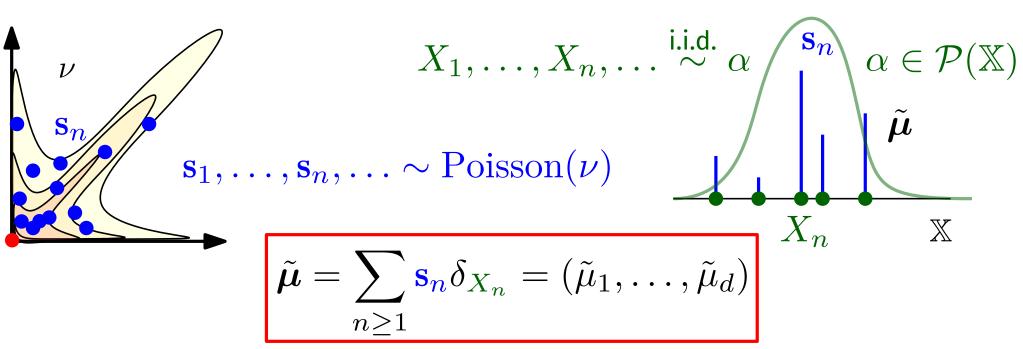
$$\nu \in \Pi(\bar{\nu}, \dots, \bar{\nu})$$

 $\bar{\nu}$ measure on $(0, +\infty)$ with $\int s^2 d\bar{\nu}(s) < +\infty$ $\Pi(\bar{\nu}, \cdots, \bar{\nu}) = \{\text{Measure on } [0, +\infty)^d \setminus \{0\} \text{ with marginals } \bar{\nu}\}$



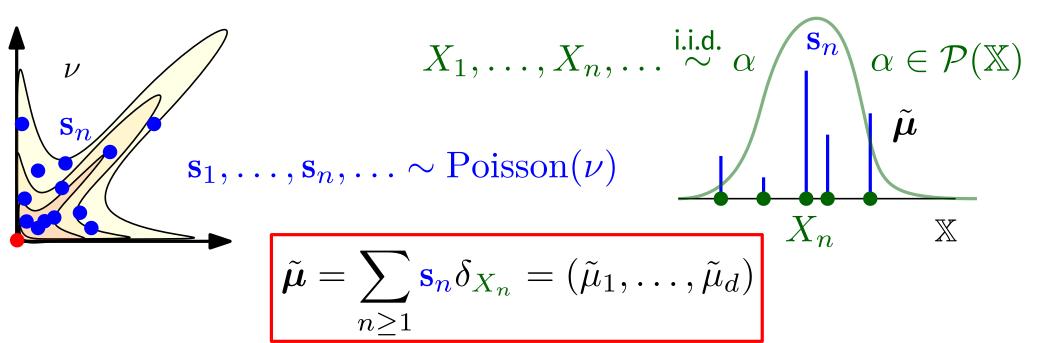


 $\bar{\nu}$ measure on $(0, +\infty)$ with $\int s^2 d\bar{\nu}(s) < +\infty$ $\Pi(\bar{\nu}, \cdots, \bar{\nu}) = \{\text{Measure on } [0, +\infty)^d \setminus \{0\} \text{ with marginals } \bar{\nu}\}$



Collection of d random measures on ${\mathcal X}$

 $\bar{\nu}$ measure on $(0, +\infty)$ with $\int s^2 d\bar{\nu}(s) < +\infty$ $\Pi(\bar{\nu}, \cdots, \bar{\nu}) = \{\text{Measure on } [0, +\infty)^d \setminus \{0\} \text{ with marginals } \bar{\nu}\}$

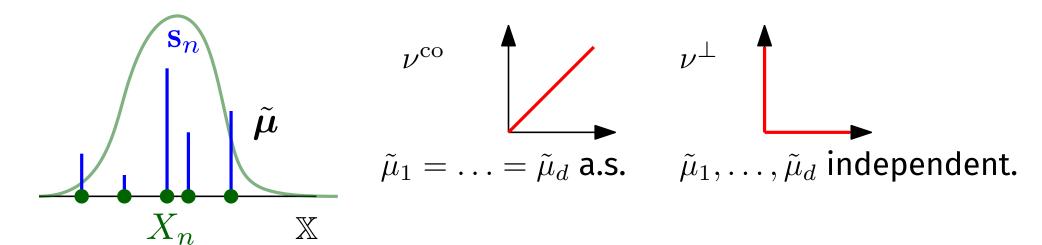


Completely Random Vector. For all $A_1, \ldots, A_n \subseteq \mathbb{X}$ disjoints, the vectors $\tilde{\mu}(A_1), \ldots, \tilde{\mu}(A_n)$ are independent random vectors in \mathbb{R}^d_+ .

For $A \subseteq X$, the random variables $\tilde{\mu}_1(A), \ldots, \tilde{\mu}_d(A)$ may be dependent. 6/15

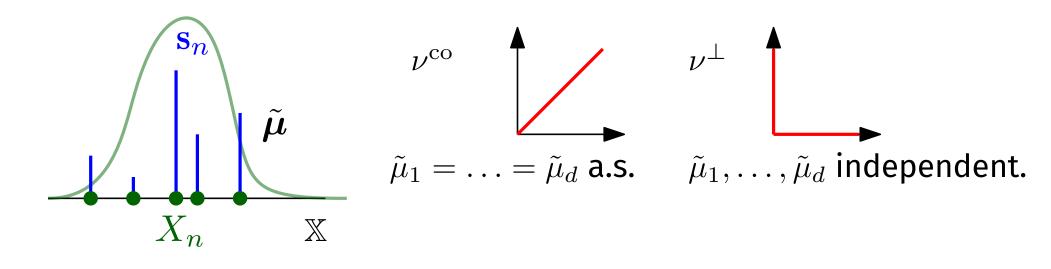
And then normalization

 $\nu \in \Pi(\bar{\nu}, \dots, \bar{\nu})$ and $\alpha \in \mathcal{P}(\mathbb{X})$ gives law of $\tilde{\mu}$ in $\mathcal{P}(\mathcal{M}_{+}(\mathbb{X})^{d})$.



And then normalization

 $\nu \in \Pi(\bar{\nu}, \dots, \bar{\nu})$ and $\alpha \in \mathcal{P}(\mathbb{X})$ gives law of $\tilde{\mu}$ in $\mathcal{P}(\mathcal{M}_+(\mathbb{X})^d)$.

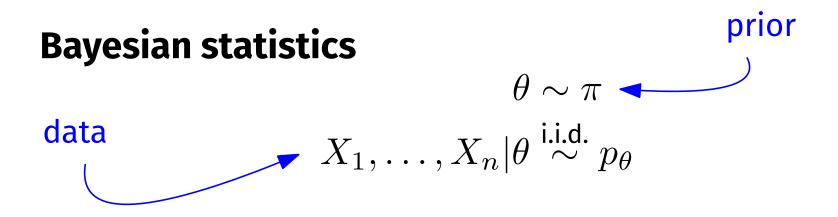


Normalized version:

$$\left(\frac{\tilde{\mu}_1}{\tilde{\mu}_1(\mathbb{X})}, \dots, \frac{\tilde{\mu}_d}{\tilde{\mu}_d(\mathbb{X})}\right)$$

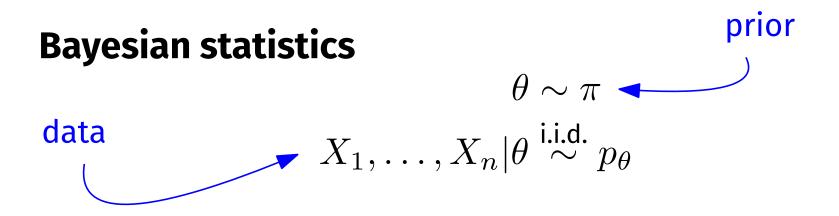
gives d random (dependent) probabilities, law in $\mathcal{P}(\mathcal{P}(\mathbb{X})^d)$.

Why random probabilities? Prior in Bayesian Nonparametrics



Lijoi and Prünster (2010). Models beyond the Dirichlet process.

Why random probabilities? Prior in Bayesian Nonparametrics

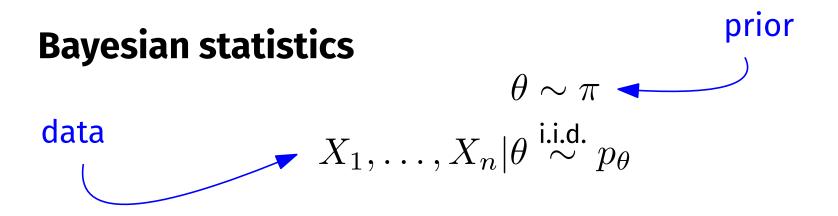


Remark: p_{θ} with $\theta \sim \pi$ is a random probability.

Bayesian NonParametrics: define directly \tilde{p} a random probability instead of p_{θ} and π .

Lijoi and Prünster (2010). Models beyond the Dirichlet process.

Why random probabilities? Prior in Bayesian Nonparametrics



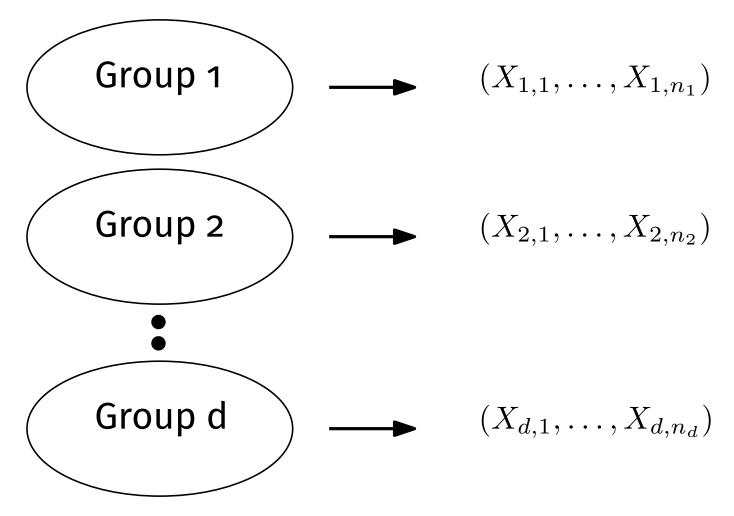
Remark: p_{θ} with $\theta \sim \pi$ is a random probability.

Bayesian NonParametrics: define directly \tilde{p} a random probability instead of p_{θ} and π .

(Normalized) completely random measures: analytical tractability of the posterior distribution.

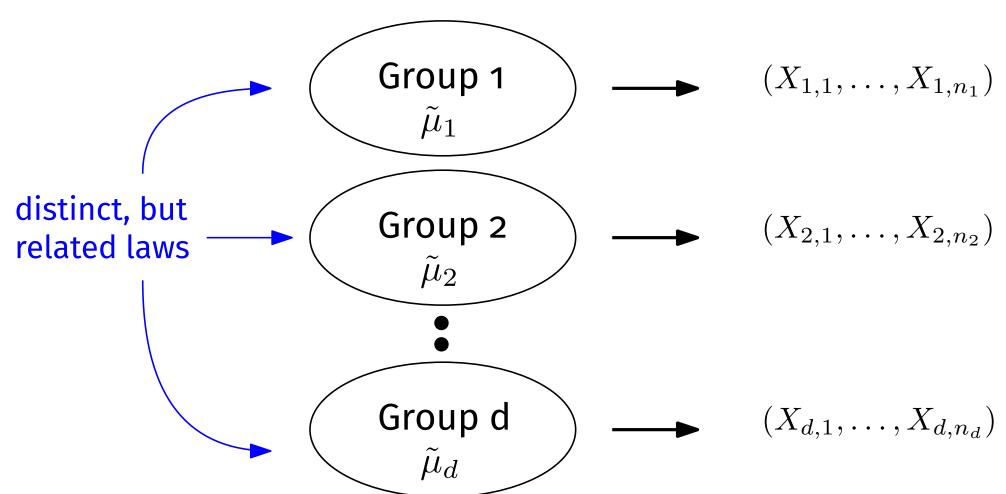
Lijoi and Prünster (2010). Models beyond the Dirichlet process.

Why quantifying dependence?



9/15

Why quantifying dependence?

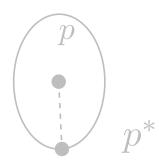


Bayesian inference allows for borrowing of information

Goal: quantifying the amount of **dependence** between groups already present in the **prior**

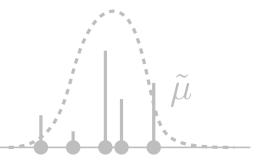
9/15

Catalano, Lijoi and Prünster (2021). Measuring dependence in the Wasserstein distance for Bayesian nonparametric models.



1 - Measuring dependence with Wasserstein distance

2 - Why look at Lévy intensities: link with completely random measures



(Classical) optimal transport

Definition. If ν^1, ν^2 probability distributions, the Wasserstein distance is

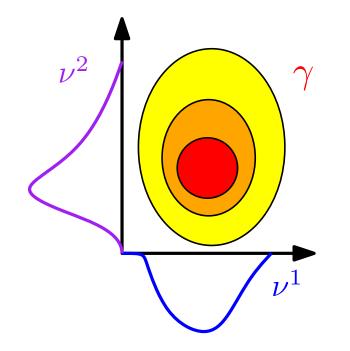
 $W_2(\nu^1, \nu^2)^2 = \min_{(X, Y)} \left\{ \mathbb{E} \left[\|X - Y\|^2 \right] : X \sim \nu^1 \text{ and } Y \sim \nu^2 \right\}$

(Classical) optimal transport

Definition. If ν^1, ν^2 probability distributions, the Wasserstein distance is

$$W_2(\nu^1, \nu^2)^2 = \min_{(X,Y)} \left\{ \mathbb{E}\left[\|X - Y\|^2 \right] : X \sim \nu^1 \text{ and } Y \sim \nu^2 \right\}$$

$$= \min_{\gamma} \left\{ \iint \|x - y\|^2 \mathrm{d}\gamma(x, y) : \pi_1 \# \gamma = \nu^1 \text{ and } \pi_2 \# \gamma = \nu^2 \right\}$$



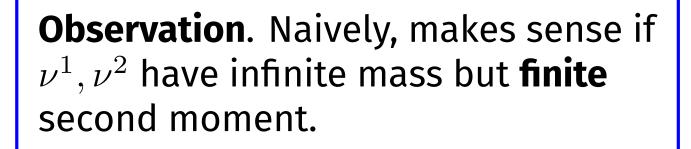
(Classical) optimal transport

Definition. If ν^1, ν^2 probability distributions, the Wasserstein distance is

 $W_2(\nu^1, \nu^2)^2 = \min_{(X,Y)} \left\{ \mathbb{E}\left[\|X - Y\|^2 \right] : X \sim \nu^1 \text{ and } Y \sim \nu^2 \right\}$

 ν^2

$$= \min_{\gamma} \left\{ \iint \|x - y\|^2 \mathrm{d}\gamma(x, y) : \pi_1 \# \gamma = \nu^1 \text{ and } \pi_2 \# \gamma = \nu^2 \right\}$$
$$\leq \int \|x\|^2 \mathrm{d}\nu^1(x) + \int \|y\|^2 \mathrm{d}\nu^2(y)$$

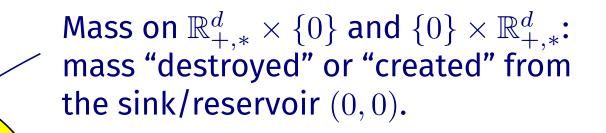


Extended Wasserstein distance

Definition. If ν^1, ν^2 positive measures on $\mathbb{R}^d_+ \setminus \{0\}$ with **finite second moments**, the Wasserstein distance is

$$W_*(\nu^1,\nu^2)^2 = \min_{\gamma} \left\{ \iint \|x-y\|^2 \mathrm{d}\gamma(x,y) : \pi_1 \#\gamma|_{\mathbb{R}^d_+ \setminus \{0\}} = \nu^1 \\ \text{and} \ \pi_2 \#\gamma|_{\mathbb{R}^d_+ \setminus \{0\}} = \nu^2 \right\}$$

with γ measure on $\mathbb{R}^{2d}_+ \setminus \{(0,0)\}.$



Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions.

Guillen, Mou, Święch (2019). Coupling Lévy measures and comparison principles for viscosity solutions.

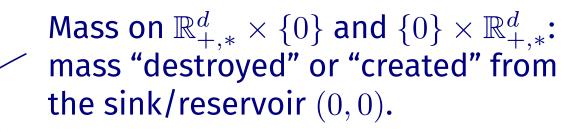
 ν^2

Extended Wasserstein distance

Definition. If ν^1, ν^2 positive measures on $\mathbb{R}^d_+ \setminus \{0\}$ with **finite second moments**, the Wasserstein distance is

$$W_*(\nu^1,\nu^2)^2 = \min_{\gamma} \left\{ \iint \|x-y\|^2 \mathrm{d}\gamma(x,y) : \pi_1 \#\gamma|_{\mathbb{R}^d_+ \setminus \{0\}} = \nu^1 \\ \text{and} \ \pi_2 \#\gamma|_{\mathbb{R}^d_+ \setminus \{0\}} = \nu^2 \right\}$$

with γ measure on $\mathbb{R}^{2d}_+ \setminus \{(0,0)\}.$



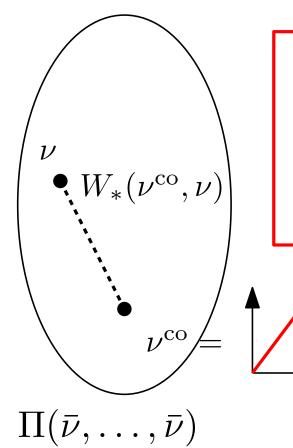
Metrizes weak convergence and convergence of second moment with respect to 0 (work with I. Pinheiro).

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions.

Guillen, Mou, Święch (2019). Coupling Lévy measures and comparison principles for viscosity solutions.

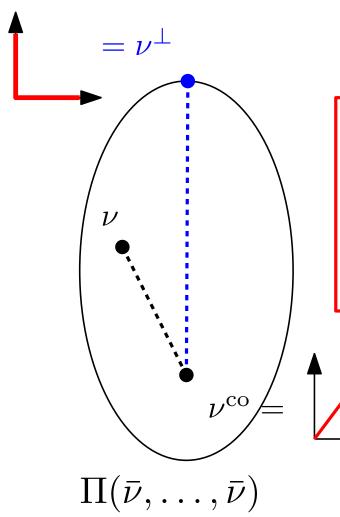
 ν^2

Building the index



First result. $W_*(\nu^{co}, \nu)$ can be computed with 1d integrals of tail functions.

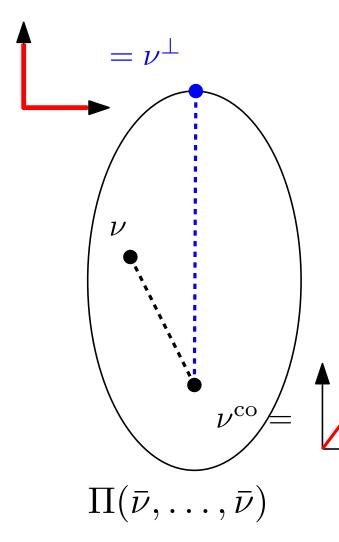
Catalano, Lavenant, Lijoi, Prünster (2023+). A Wasserstein index of dependence for random measures.



Building the index

First result. $W_*(\nu^{co}, \nu)$ can be computed with 1d integrals of tail functions.

Second result. If ν^{co} has infinite mass, $W_*(\nu^{co}, \nu)$ is maximized exactly for $\nu = \nu^{\perp}$.



Building the index

First result. $W_*(\nu^{co}, \nu)$ can be computed with 1d integrals of tail functions.

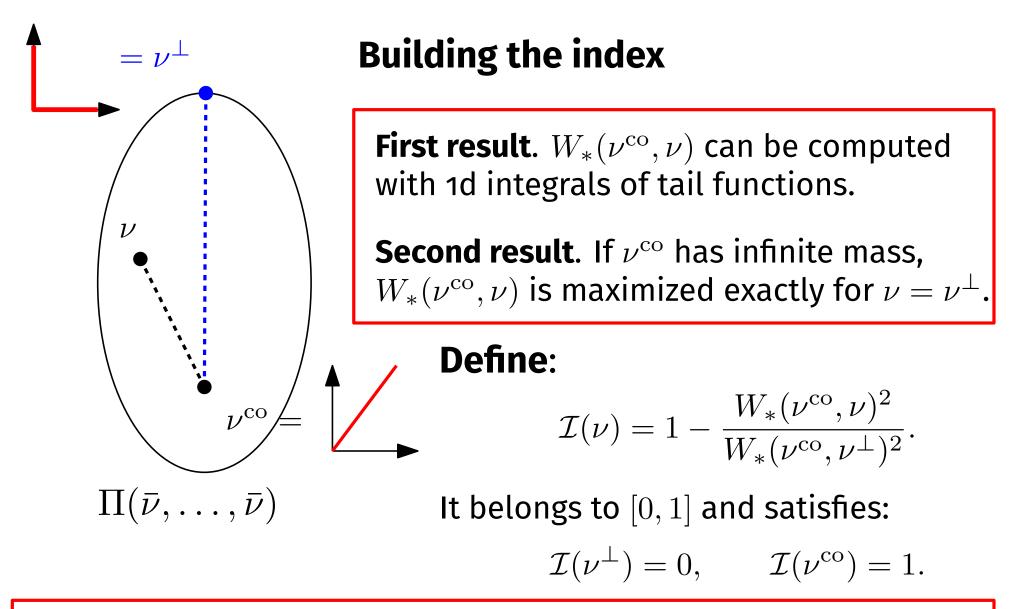
Second result. If ν^{co} has infinite mass, $W_*(\nu^{co}, \nu)$ is maximized exactly for $\nu = \nu^{\perp}$.

Define:

$$\mathcal{I}(\nu) = 1 - \frac{W_*(\nu^{\rm co}, \nu)^2}{W_*(\nu^{\rm co}, \nu^{\perp})^2}.$$

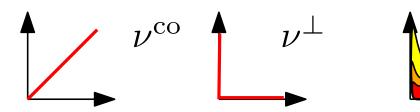
It belongs to $\left[0,1\right]$ and satisfies:

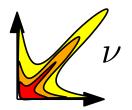
 $\mathcal{I}(\nu^{\perp}) = 0, \qquad \mathcal{I}(\nu^{\mathrm{co}}) = 1.$



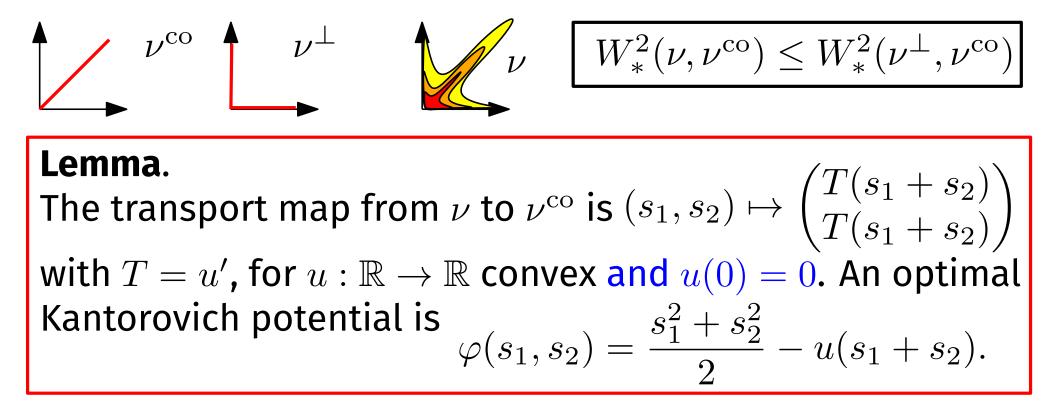
Consequence. We have an index of dependence for homogeneous infinitely active completely random vectors without fixed atoms, with equal marginals and finite second moments.

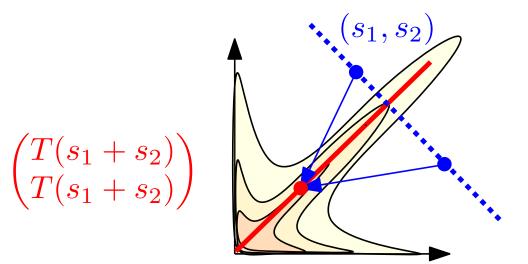
Catalano, Lavenant, Lijoi, Prünster (2023+). A Wasserstein index of dependence for random measures.

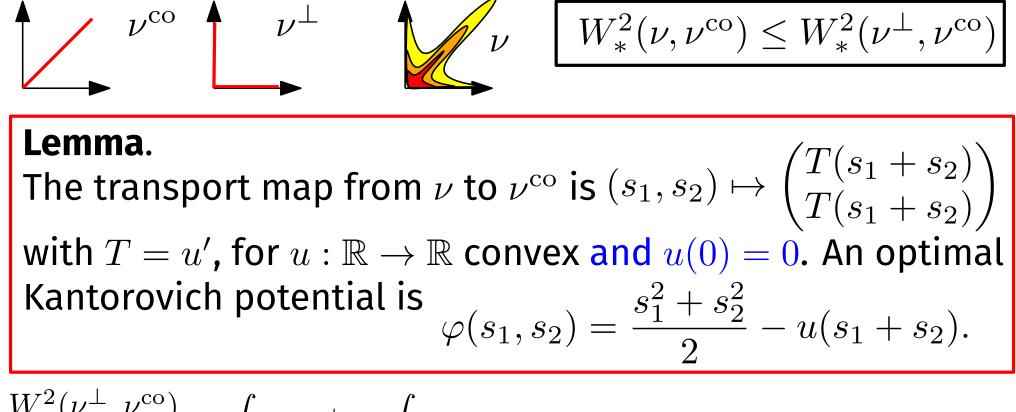




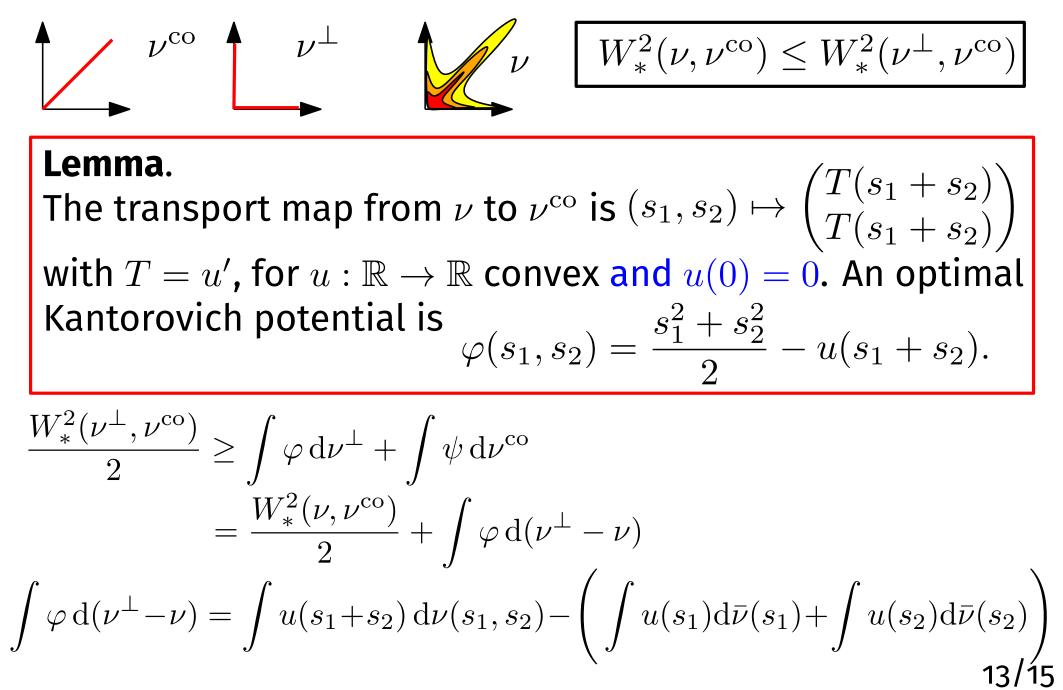
 $\nu \qquad W^2_*(\nu,\nu^{co}) \le W^2_*(\nu^{\perp},\nu^{co})$

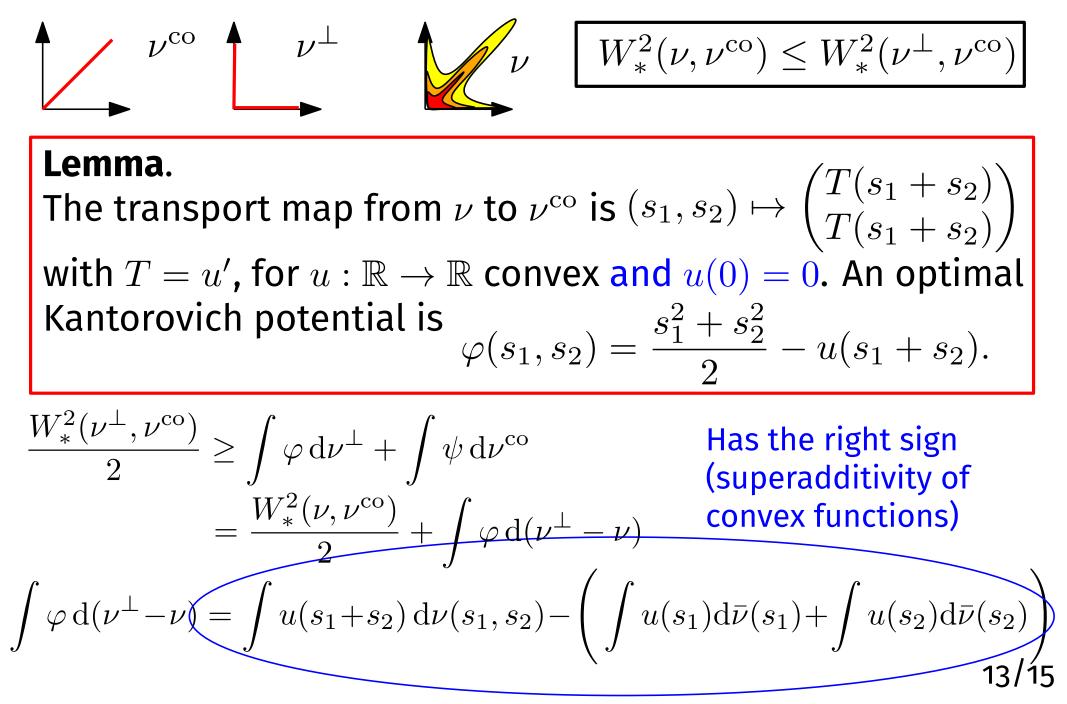






$$\frac{W_*^2(\nu^{\perp}, \nu^{\rm co})}{2} \ge \int \varphi \,\mathrm{d}\nu^{\perp} + \int \psi \,\mathrm{d}\nu^{\rm co}$$
$$= \frac{W_*^2(\nu, \nu^{\rm co})}{2} + \int \varphi \,\mathrm{d}(\nu^{\perp} - \nu)$$





Examples

Additive model

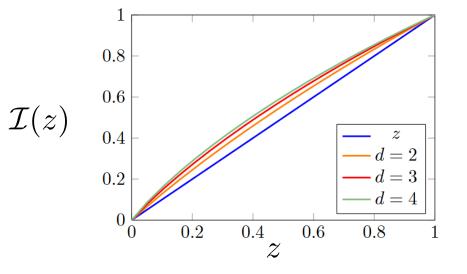
Parameter $z \in [0, 1]$, $\nu = (1-z)\nu^{\perp} + z\nu^{\rm co}$ 1 0.80.6 $\mathcal{I}(z)$ 0.4z= 2= 30.2d=40 0.20.4 0.6 0.8 0 1 z $\mathcal{I}(z) \geq z$ [= Covariance if d = 2]

Examples

Additive model

Parameter $z \in [0,1]$,

$$\nu = (1-z)\nu^{\perp} + z\nu^{\rm cc}$$



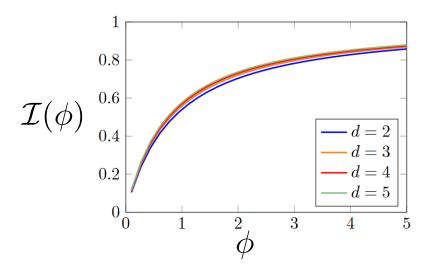
 $\mathcal{I}(z) \geq z$ [= Covariance if d = 2]

Compound random measures

Parameter ϕ measures dependence

$$\nu(s_1, \dots, s_d) = \int_0^{+\infty} h^{\phi} \left(\frac{s_1}{u}, \dots, \frac{s_d}{u}\right) d\nu_*^{\phi}(u)$$

for well chosen h^{ϕ}, ν^{ϕ}_* .



14/15

Lijoi, Nipoti and Prünster (2014). Bayesian inference with dependent normalized completely random measures. Griffin and Leisen (2017). Compound random measures and their use in bayesian non-parametrics.

Examples

 $\nu(s_1,\ldots,s_d)$

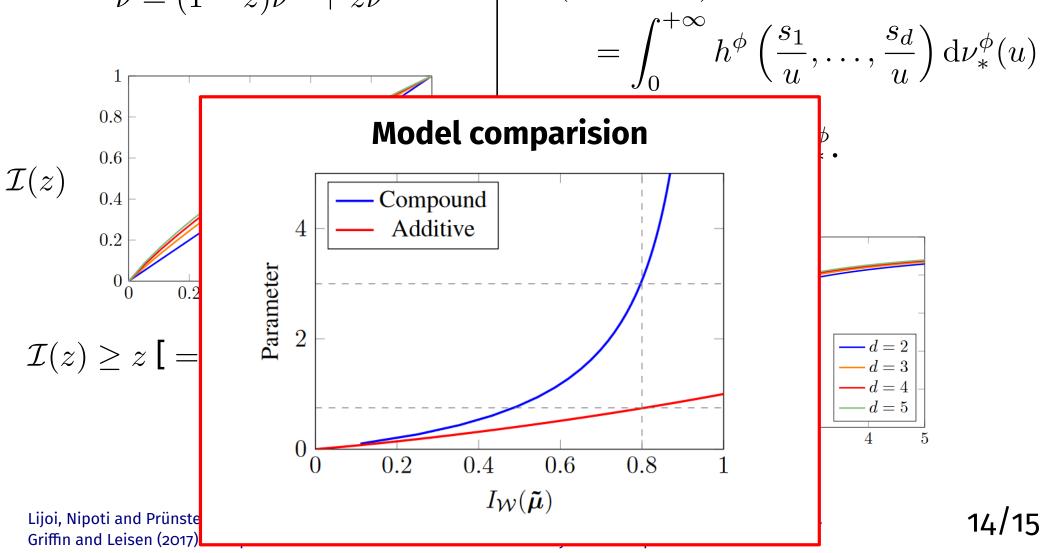
Additive model

Parameter $z \in [0, 1]$,

$$\nu = (1-z)\nu^{\perp} + z\nu^{\rm cc}$$

Compound random measures

Parameter ϕ measures dependence



Conclusion

What is done:

- Wasserstein distance between Lévy measures.
- Index of dependence between Completely Random Vectors.

What's next?:

- Study dependence in the posterior.
- Use this distance for other purposes: merging of opinions, hypothesis testing, etc.

For this, need to extend the distance to couple both atoms and jumps, to Cox processes.

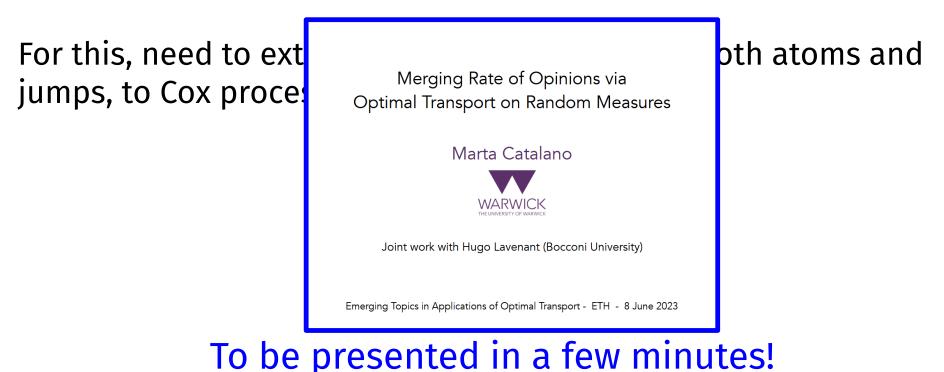
Conclusion

What is done:

- Wasserstein distance between Lévy measures.
- Index of dependence between Completely Random Vectors.

What's next?:

- Study dependence in the posterior.
- Use this distance for other purposes: merging of opinions, hypothesis testing, etc.



Catalano, Lavenant (2023+). Merging Rate of Opinions via Optimal Transport on Random Measures.

Conclusion

What is done:

- Wasserstein distance between Lévy measures.
- Index of dependence between Completely Random Vectors.

What's next?:

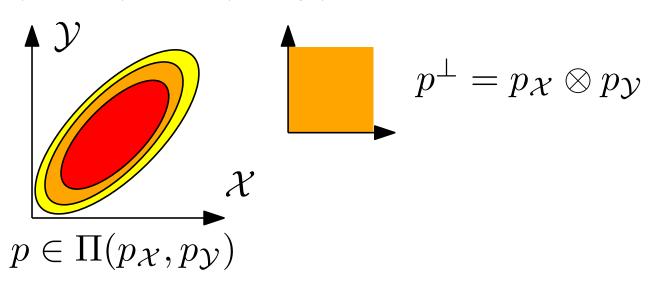
- Study dependence in the posterior.
- Use this distance for other purposes: merging of opinions, hypothesis testing, etc.

For this, need to extend the distance to couple both atoms and jumps, to Cox processes.

Thank you for your attention

Catalano, Lavenant (2023+). Merging Rate of Opinions via Optimal Transport on Random Measures.

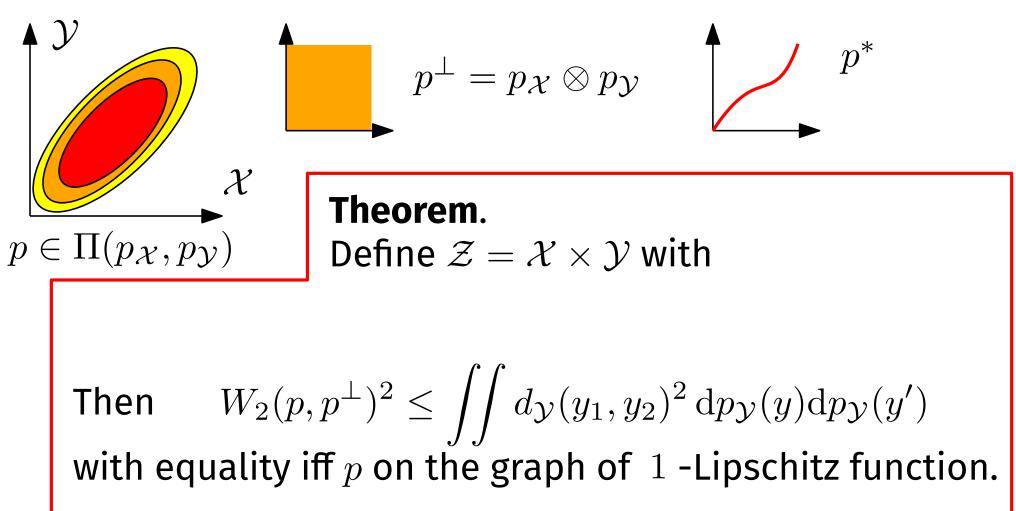
 $(\mathcal{X}, d_{\mathcal{X}})$ and $(\mathcal{Y}, d_{\mathcal{Y}})$ metric spaces with probabilies $p_{\mathcal{X}}, p_{\mathcal{Y}}$



Nies, Staudt, and Munk (2021). Transport dependency: Optimal transport based dependency measures.

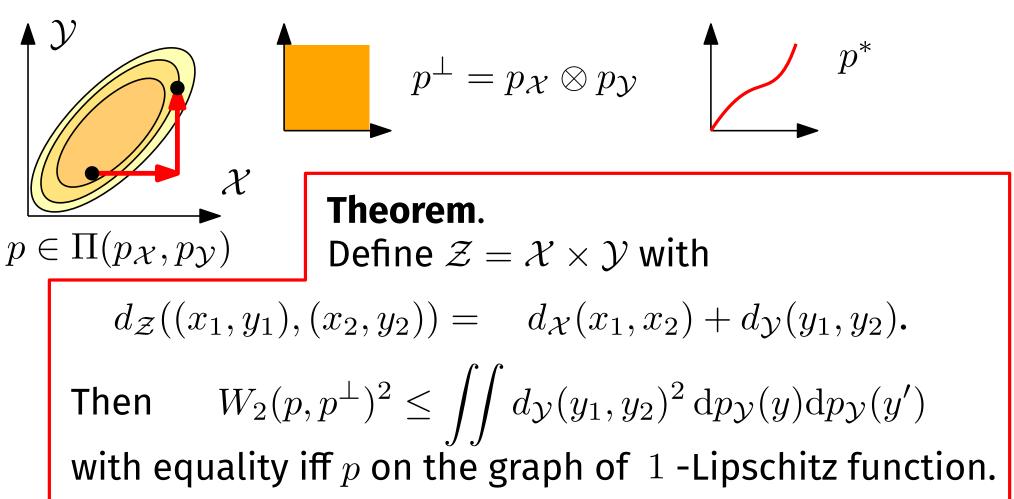
Annex

 $(\mathcal{X}, d_{\mathcal{X}})$ and $(\mathcal{Y}, d_{\mathcal{Y}})$ metric spaces with probabilies $p_{\mathcal{X}}, p_{\mathcal{Y}}$

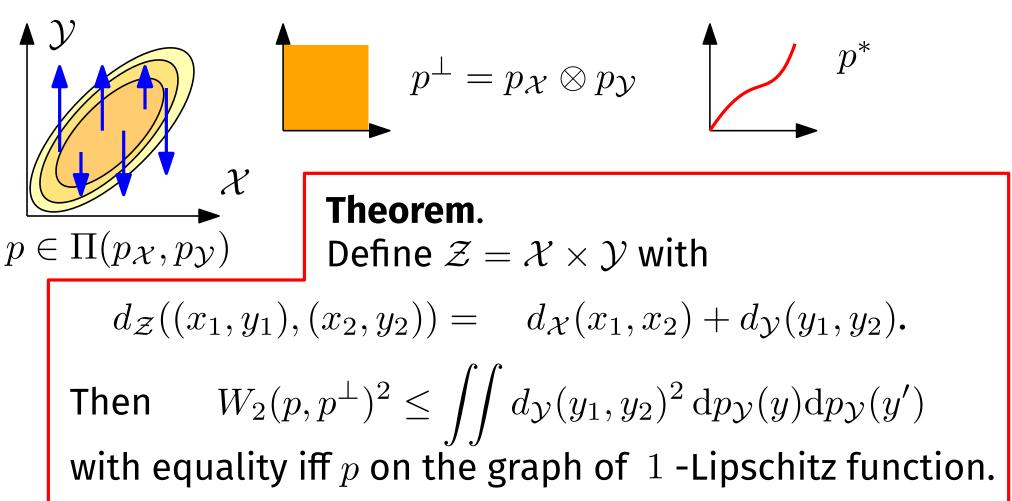


Annex

 $(\mathcal{X}, d_{\mathcal{X}})$ and $(\mathcal{Y}, d_{\mathcal{Y}})$ metric spaces with probabilies $p_{\mathcal{X}}, p_{\mathcal{Y}}$



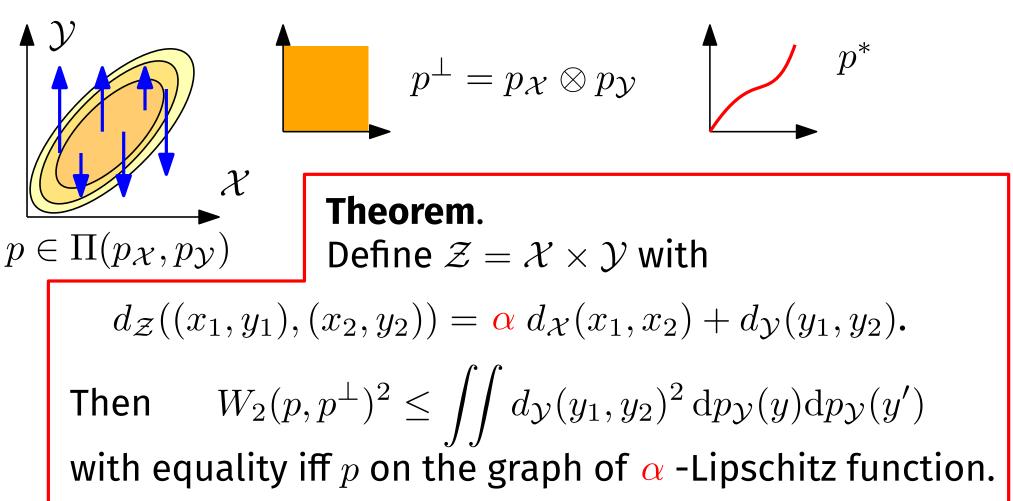
 $(\mathcal{X}, d_{\mathcal{X}})$ and $(\mathcal{Y}, d_{\mathcal{Y}})$ metric spaces with probabilies $p_{\mathcal{X}}, p_{\mathcal{Y}}$



Proof idea. Send (x, y) onto (x, y') with y' independent of (x, y).

Annex

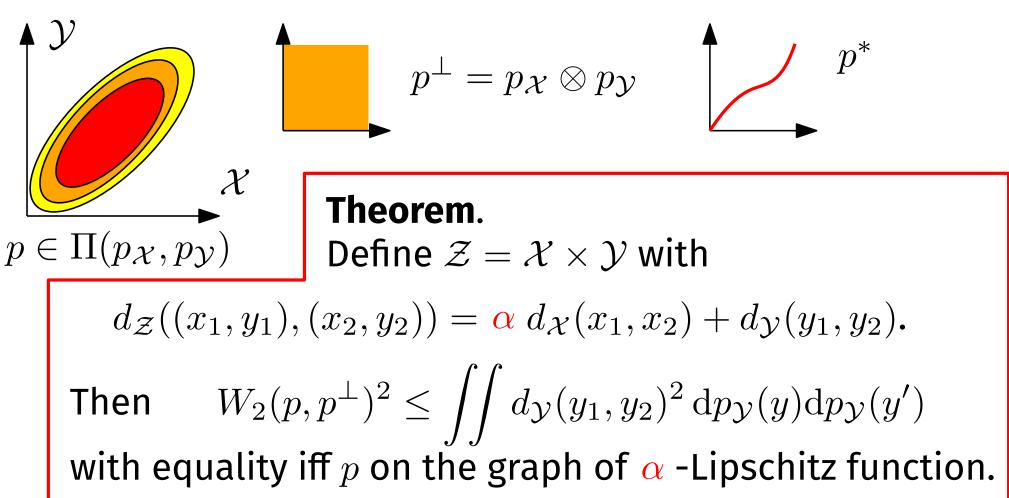
 $(\mathcal{X}, d_{\mathcal{X}})$ and $(\mathcal{Y}, d_{\mathcal{Y}})$ metric spaces with probabilies $p_{\mathcal{X}}, p_{\mathcal{Y}}$



Proof idea. Send (x, y) onto (x, y') with y' independent of (x, y).

Annex

 $(\mathcal{X}, d_{\mathcal{X}})$ and $(\mathcal{Y}, d_{\mathcal{Y}})$ metric spaces with probabilies $p_{\mathcal{X}}, p_{\mathcal{Y}}$

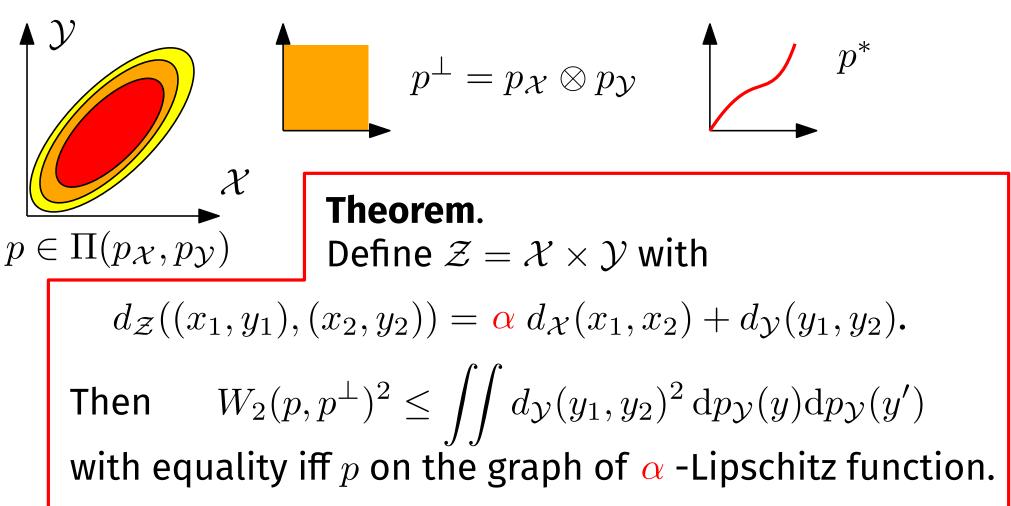


Annex

- Defined in arbitrary metric spaces.
- Inherits properties of optimal

transport.

 $(\mathcal{X}, d_{\mathcal{X}})$ and $(\mathcal{Y}, d_{\mathcal{Y}})$ metric spaces with probabilies $p_{\mathcal{X}}, p_{\mathcal{Y}}$



- Defined in arbitrary metric spaces.
- Inherits properties of optimal transport.

• Not tractable analytically.

Annex

 Sampling: curse of dimensionality.