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Disclaimers
I am not a (Bayesian) statistician.
My background: mathematical analysis, optimal transport.
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A problem I don’t know how to solve
Π(dx, dx) = {probability on [0, 1]2 with uniform marginals}

Product coupling

increasing coupling

argmax W2

(
p,

)
={ }
,

p ∈ Π(dx, dx)

Why? Index of dependence

I(p) =
W 2

2

(
p,

)

W 2
2

(
,

)
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The problem I will solve

Π(ν̄, · · · , ν̄) = {Measure on [0,+∞)d \ {0} with marginals ν̄}
ν̄ measure on (0,+∞) with

∫
s2 dν̄(s) < +∞

νco “most dependent”
Typicall ν̄

Infinite mass

s
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Π(ν̄, · · · , ν̄) = {Measure on [0,+∞)d \ {0} with marginals ν̄}
ν̄ measure on (0,+∞) with

∫
s2 dν̄(s) < +∞

νco “most dependent”

ν⊥ “most independent”

argmax W∗

(
ν,

)
=

W∗ Wasserstein distance between
measures of infinite mass

ν ∈ Π(ν̄, . . . , ν̄)
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Π(ν̄, · · · , ν̄) = {Measure on [0,+∞)d \ {0} with marginals ν̄}
ν̄ measure on (0,+∞) with

∫
s2 dν̄(s) < +∞

νco “most dependent”

ν⊥ “most independent”

argmax W∗

(
ν,

)
=

ν ∈ Π(ν̄, . . . , ν̄)

Why?
Index of dependence between
Completely Random Measures,
used as prior in Bayesian
NonParametrics
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Measuring dependence with a distance
Dependence structure Π

p⊥

“most independent”
If D measure of discrepancy on
Π then D(p, p⊥) measure of
dependence of p.

Móri, and Székely (2020). The Earth Mover’s correlation.
Nies, Staudt, and Munk (2021). Transport dependency: Optimal transport based dependency measures.

Wiesel (2022). Measuring association with Wasserstein distances.
Mordant and Segers (2022). Measuring dependence between random vectors via optimal transport. 4/15
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I(p) = D(p, p⊥)

D(p∗, p⊥)

I(p) ∈ [0, 1] and equal to 0 (resp. 1)
for p⊥ (resp. p∗)
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p ∈ Π(dx, dx) d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|.

p⊥
p∗

W2(p, p
⊥) ≤W2(p

∗, p⊥) for any p ∈ Π(dx, dx).

Choose

Proof. Send (x, y) onto (x, y′) with y′ independent of (x, y).

W2(p, p
⊥)2 ≤

∫∫
(y − y′)2 dydy′ =W2(p

∗, p⊥)2.

Explicit computation

Theorem.

Then
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• Inherits properties of optimal
transport.

supported on
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ChooseTheorem.

Then
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• Extension to metric spaces.
• Inherits properties of optimal
transport.

supported on
graph 1-Lipschitz
function

• Not tractable analytically.
• Sampling: curse of
dimensionality.

Over [0, 1]2
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ν

X

α ∈ P(X)X1, . . . , Xn, . . .
i.i.d.∼ α

Xn

s1, . . . , sn, . . . ∼ Poisson(ν)
sn

µ̃ =
∑
n≥1

snδXn
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Collection of d random measures on X
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Π(ν̄, · · · , ν̄) = {Measure on [0,+∞)d \ {0} with marginals ν̄}
ν̄ measure on (0,+∞) with

∫
s2 dν̄(s) < +∞

Lévy intensities and Completely random measures

ν

X

α ∈ P(X)X1, . . . , Xn, . . .
i.i.d.∼ α

Xn

s1, . . . , sn, . . . ∼ Poisson(ν)
sn

µ̃ =
∑
n≥1

snδXn
= (µ̃1, . . . , µ̃d)

Completely Random Vector. For all A1, . . . , An ⊆ X disjoints,
the vectors µ̃(A1), . . . , µ̃(An) are independent random
vectors in Rd

+.
For A ⊆ X, the random variables µ̃1(A), . . . , µ̃d(A) may be
dependent.

sn

µ̃
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And then normalization
ν ∈ Π(ν̄, . . . , ν̄) and α ∈ P(X) gives law of µ̃ in P(M+(X)d).

νco ν⊥

µ̃1 = . . . = µ̃d a.s. µ̃1, . . . , µ̃d independent.

XXn

sn

µ̃

Lijoi, Nipoti and Prünster (2014). Bayesian inference with dependent normalized completely random measures.
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ν ∈ Π(ν̄, . . . , ν̄) and α ∈ P(X) gives law of µ̃ in P(M+(X)d).

νco ν⊥

µ̃1 = . . . = µ̃d a.s. µ̃1, . . . , µ̃d independent.

(
µ̃1

µ̃1(X)
, . . . ,

µ̃d

µ̃d(X)

)
Normalized version:

gives d random (dependent) probabilities, law in P(P(X)d).

XXn

sn

µ̃

Lijoi, Nipoti and Prünster (2014). Bayesian inference with dependent normalized completely random measures.
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Why random probabilities? Prior in Bayesian Nonparametrics

θ ∼ π

X1, . . . , Xn|θ
i.i.d.∼ pθ

Bayesian statistics prior

data

Lijoi and Prünster (2010). Models beyond the Dirichlet process.
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Why random probabilities? Prior in Bayesian Nonparametrics

θ ∼ π

X1, . . . , Xn|θ
i.i.d.∼ pθ

Bayesian statistics prior

data

Remark: pθ with θ ∼ π is a random probability.

Bayesian NonParametrics: define directly p̃ a random
probability instead of pθ and π.

(Normalized) completely random measures: analytical
tractability of the posterior distribution.

Lijoi and Prünster (2010). Models beyond the Dirichlet process.
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Why quantifying dependence?

Group 1

Group 2

Group d

(X1,1, . . . , X1,n1
)

(X2,1, . . . , X2,n2
)

(Xd,1, . . . , Xd,nd
)

Catalano, Lijoi and Prünster (2021). Measuring dependence in the Wasserstein distance for Bayesian nonparametric models.
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Why quantifying dependence?

Bayesian inference allows for borrowing of information

Goal: quantifying the amount of dependence
between groups already present in the prior

Group 1

Group 2

Group d

(X1,1, . . . , X1,n1
)

(X2,1, . . . , X2,n2
)

(Xd,1, . . . , Xd,nd
)

distinct, but
related laws

µ̃1

µ̃2

µ̃d

Catalano, Lijoi and Prünster (2021). Measuring dependence in the Wasserstein distance for Bayesian nonparametric models.
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(Classical) optimal transport

Definition. If ν1, ν2 probability distributions, the
Wasserstein distance is
W2(ν

1, ν2)2 = min
(X,Y )

{
E
[
‖X − Y ‖2

]
: X ∼ ν1 and Y ∼ ν2

}

10/15



(Classical) optimal transport

Definition. If ν1, ν2 probability distributions, the
Wasserstein distance is
W2(ν

1, ν2)2 = min
(X,Y )

{
E
[
‖X − Y ‖2

]
: X ∼ ν1 and Y ∼ ν2

}
= min

γ

{∫∫
‖x− y‖2dγ(x, y) : π1#γ = ν1 and π2#γ = ν2

}

γ

ν1

ν2

10/15



(Classical) optimal transport

Definition. If ν1, ν2 probability distributions, the
Wasserstein distance is
W2(ν

1, ν2)2 = min
(X,Y )

{
E
[
‖X − Y ‖2

]
: X ∼ ν1 and Y ∼ ν2

}
= min

γ

{∫∫
‖x− y‖2dγ(x, y) : π1#γ = ν1 and π2#γ = ν2

}

γ

ν1

ν2
≤
∫

‖x‖2dν1(x) +
∫

‖y‖2dν2(y)

Observation. Naively, makes sense if
ν1, ν2 have infinite mass but finite
second moment.

10/15



Extended Wasserstein distance

Definition. If ν1, ν2 positive measures on Rd
+ \ {0} with

finite second moments, the Wasserstein distance is

W∗(ν
1, ν2)2 = min

γ

{∫∫
‖x− y‖2dγ(x, y) : π1#γ|Rd

+\{0} = ν1

and π2#γ|Rd
+\{0} = ν2

}
with γ measure on R2d

+ \ {(0, 0)}.

ν1

ν2

γ Mass on Rd
+,∗ × {0} and {0} × Rd

+,∗:
mass “destroyed” or “created” from
the sink/reservoir (0, 0).

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with
Dirichlet boundary conditions.
Guillen, Mou, Świȩch (2019). Coupling Lévy measures and comparison principles for viscosity solutions.
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}
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+ \ {(0, 0)}.

ν1

ν2

γ Mass on Rd
+,∗ × {0} and {0} × Rd

+,∗:
mass “destroyed” or “created” from
the sink/reservoir (0, 0).

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with
Dirichlet boundary conditions.
Guillen, Mou, Świȩch (2019). Coupling Lévy measures and comparison principles for viscosity solutions.

Metrizes weak convergence and
convergence of second moment with
respect to 0 (work with I. Pinheiro).
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Building the index

νco =

ν
W∗(ν

co, ν)

First result. W∗(ν
co, ν) can be computed

with 1d integrals of tail functions.

Catalano, Lavenant, Lijoi, Prünster (2023+). A Wasserstein index of dependence for random measures.

Π(ν̄, . . . , ν̄)
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Building the index

νco =

ν

First result. W∗(ν
co, ν) can be computed

with 1d integrals of tail functions.

Second result. If νco has infinite mass,
W∗(ν

co, ν) is maximized exactly for ν = ν⊥.

= ν⊥

Define:

Consequence. We have an index of dependence for homogeneous
infinitely active completely random vectors without fixed atoms,
with equal marginals and finite second moments.

I(ν) = 1− W∗(ν
co, ν)2

W∗(νco, ν⊥)2
.

It belongs to [0, 1] and satisfies:
I(ν⊥) = 0, I(νco) = 1.

Catalano, Lavenant, Lijoi, Prünster (2023+). A Wasserstein index of dependence for random measures.
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νco ν⊥ ν

The proof of the main result (d=2)

W 2
∗ (ν, ν

co) ≤W 2
∗ (ν

⊥, νco)
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The proof of the main result (d=2)

W 2
∗ (ν, ν

co) ≤W 2
∗ (ν

⊥, νco)

Lemma.
The transport map from ν to νco is (s1, s2) 7→

(
T (s1 + s2)
T (s1 + s2)

)
with T = u′, for u : R → R convex and u(0) = 0. An optimal
Kantorovich potential is

φ(s1, s2) =
s21 + s22

2
− u(s1 + s2).
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=
W 2
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2
+

∫
φ d(ν⊥ − ν)
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⊥, νco)

Lemma.
The transport map from ν to νco is (s1, s2) 7→

(
T (s1 + s2)
T (s1 + s2)

)
with T = u′, for u : R → R convex and u(0) = 0. An optimal
Kantorovich potential is

φ(s1, s2) =
s21 + s22

2
− u(s1 + s2).

∫
φ d(ν⊥−ν) =

∫
u(s1+s2) dν(s1, s2)−

(∫
u(s1)dν̄(s1)+

∫
u(s2)dν̄(s2)

)
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φ(s1, s2) =
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2
− u(s1 + s2).

∫
φ d(ν⊥−ν) =

∫
u(s1+s2) dν(s1, s2)−

(∫
u(s1)dν̄(s1)+

∫
u(s2)dν̄(s2)

)
Has the right sign
(superadditivity of
convex functions)
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Lijoi, Nipoti and Prünster (2014). Bayesian inference with dependent normalized completely random measures.

Examples
Additive model

Parameter z ∈ [0, 1],

ν = (1− z)ν⊥ + zνco

z

I(z)

I(z) ≥ z [ = Covariance if d = 2]
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Lijoi, Nipoti and Prünster (2014). Bayesian inference with dependent normalized completely random measures.
Griffin and Leisen (2017). Compound random measures and their use in bayesian non-parametrics.

Examples
Additive model Compound random measures

Parameter z ∈ [0, 1],

ν = (1− z)ν⊥ + zνco

z

I(z)

I(z) ≥ z [ = Covariance if d = 2]

Parameter ϕ measures dependence

=

∫ +∞

0

hϕ
(s1
u
, . . . ,

sd
u

)
dνϕ∗ (u)

ν(s1, . . . , sd)

for well chosen hϕ, νϕ∗ .

ϕ

I(ϕ)
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Examples
Additive model Compound random measures

Parameter z ∈ [0, 1],

ν = (1− z)ν⊥ + zνco

z

I(z)

I(z) ≥ z [ = Covariance if d = 2]

Parameter ϕ measures dependence

=

∫ +∞

0

hϕ
(s1
u
, . . . ,

sd
u

)
dνϕ∗ (u)

ν(s1, . . . , sd)

for well chosen hϕ, νϕ∗ .

ϕ

I(ϕ)

Model comparision

14/15



Conclusion
What is done:
• Wasserstein distance between Lévy measures.
• Index of dependence between Completely Random Vectors.

What’s next?:
• Study dependence in the posterior.
• Use this distance for other purposes: merging of opinions,
hypothesis testing, etc.

For this, need to extend the distance to couple both atoms and
jumps, to Cox processes.

Catalano, Lavenant (2023+). Merging Rate of Opinions via Optimal Transport on Random Measures.
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With the Manhattan distance

p ∈ Π(pX , pY)

p⊥ = pX ⊗ pY

Annex
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Proof idea. Send (x, y) onto (x, y′) with y′ independent of (x, y).
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• Defined in arbitrary metric spaces.
• Inherits properties of optimal
transport.
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• Defined in arbitrary metric spaces.
• Inherits properties of optimal
transport.

• Not tractable analytically.
• Sampling: curse of
dimensionality.
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