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Disclaimers
| am not a (Bayesian) statistician.
My background: mathematical analysis, optimal transport.
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A problem | don’t know how to solve
I1(dx,dz) = {probability on [0, 1]* with uniform marginals}

AB, ) Té,
decreasing coupling T—' Increasing coupling

Why? Index of dependence

Product coupling

argmax Wy (p, ‘ ) = Z(p) =
p € 1I(dx, dx) ) . W22 ( | )
AN =




The problem I will solve
7 measure on (0, +o00) with [ s?dp(s) < 400
II(7,---,v) = {Measure on [0, +o0)? \ {0} with marginals 7}
A A

>

most dependent” , -
kTyplcall U
L
L
o

Infinite mass

3/15



The problem I will solve
7 measure on (0, +o00) with [ s?dp(s) < 400
II(7,---,v) = {Measure on [0, +o0)? \ {0} with marginals 7}

A
argmax W, (V, ) = ‘
> >

\most dependent” v ell(p,...,v

A

W. Wasserstein distance between
| measures of infinite mass

v+ “most independent”
3/15



The problem I will solve
7 measure on (0, +o00) with [ s?dp(s) < 400
II(7,---,v) = {Measure on [0, +o0)? \ {0} with marginals 7}

A
A
argmax W, (V, ) = ‘
> >
)

\most dependent” v ell(p,...,v

Why?
Index of dependence between

Completely Random Measures,
used as prior in Bayesian
NonParametrics

v+ “most independent”
3/15
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Measuring dependence with a distance

Dependence structure IT |f D measure of discrepancy on
“most independent” I1 then D(p, p-) measure of
dependence of p.

Mori, and Székely (2020). The Earth Mover’s correlation.

Nies, Staudt, and Munk (2021). Transport dependency: Optimal transport based dependency measures.

Mordant and Segers (2022). Measuring dependence between random vectors via optimal transport. 4/15
Wiesel (2022). Measuring association with Wasserstein distances.
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Measuring dependence with a distance

Dependence structure 11

If D measure of discrepancy on
“most independent”

II then D(p, p~) measure of
dependence of p.

To solve: when is D(p, p~) maximized? say p*

Index of dependence
D(p,p™)
Z —
) D(p*,p*)
P’ Z(p) € [0,1] and equal to 0 (resp. 1)
“most dependent” for pJ_ (resp. p*)

Alternative: if D(p*, p) maximized at p- then )
v L D .p)
Mori, and Székely (2020). The Earth Mover's correlation. I(p) - 1 - *

D(p*,p*)
Nies, Staudt, and Munk (2021). Transport dependency: Optimal transport based dependency measures.

Mordant and Segers (2022). Measuring dependence between random vectors via optimal transport. 4/15
Wiesel (2022). Measuring association with Wasserstein distances.
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D is Wasserstein over the Manhattan distance

Over [0, 1]*

A A A p*

pJ_

> >

Theorem. Choose

.
p € (dz,dz) | d((z1,v1), (x2,¥2)) = |21 — 22| + |y1 — ¥2|.
Then

Wa(p,pt) < Wa(p*,p—) forany p € II(dz, dz).

Proof. Send (z,y) onto («,y’) with 3/ independent of (x,y).

//y y')? dydy’ = Wa(p*,p)*.

Explicit computation /‘ 5/15



D is Wasserstein over the Manhattan distance

Over [0, 1]?
4 A A p* supported on
pL graph 1-Lipschitz
> - function
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 Extension to metric spaces.
* Inherits properties of optimal
transport.
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Léevy intensities and Completely random measures
7 measure on (0, +o00) with [ s?dp(s) < 400
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Léevy intensities and Completely random measures
7 measure on (0, +o00) with [ s?dp(s) < 400
II(v,---,v) = {Measure on [0, +oc0)? \ {0} with marginals 7}

l.1.d. Sn
Y

, X1,y Xy % a € P(X)

~

[t
S1,...,8n,... ~ Poisson(v) l . J 1

Xn X
a= sudx, = ([, -, fid)

n>1

Collection of d random measures on X

6/15



Léevy intensities and Completely random measures
7 measure on (0, +o00) with [ s?dp(s) < 400
II(v,---,v) = {Measure on [0, +oc0)? \ {0} with marginals 7}
y Xi, oo Xy 20 /80 0 € P(X)

~

[
S1,...,8p,... ~ Poisson(v) l . .l 1

X, X
[l': anan — (/117'”7:&61)

n>1

Completely Random Vector. For all 44,..., A4, C X disjoints,
the vectors 1(A1),..., 1(A,) are independent random
vectors in RY.

For A C X, the random variables i, (A), ..., ig(A) may be
dependent. 6/15



And then normalization
v cIl(v,...,v)and a € P(X) gives law of 1 in P(M_(X)?).

Sn CcO VJ_

7
l d .l 1 fh=...=fiqds.  fi1,...,[q Independent.

7/15

Lijoi, Nipoti and Priinster (2014). Bayesian inference with dependent normalized completely random measures.



And then normalization
v cIl(v,...,v)and a € P(X) gives law of 1 in P(M_(X)?).

S’I’L VCO VJ—
7 |4 |
l d .l fii=...=fgas. f,..., [ Independent.
X, X
Normalized version: K L Hd
p1(X) fia(X)

gives d random (dependent) probabilities, law in P(P(X)%).
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Lijoi, Nipoti and Priinster (2014). Bayesian inference with dependent normalized completely random measures.



Why random probabilities? Prior in Bayesian Nonparametrics

prior

O~ ——

data i.i.d.

M Xl)"'aXn‘e ~ Do

Bayesian statistics
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Why random probabilities? Prior in Bayesian Nonparametrics

prior

O~ ——

data i.i.d.

M Xl)"'aXn‘e ~ Do

Remark: py with 6 ~ 7 1s a random probability.

Bayesian statistics

Bayesian NonParametrics: define directly p a random
probability instead of pg and .

(Normalized) completely random measures: analytical
tractability of the posterior distribution.

8/15

Lijoi and Priinster (2010). Models beyond the Dirichlet process.



Why quantifying dependence?
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Catalano, Lijoi and Priinster (2021). Measuring dependence in the Wasserstein distance for Bayesian nonparametric models.



Why quantifying dependence?

- Cogm ) —

distinct, but
| > Xo1,..., Xom
related laws — (X21,--.,Xom,)

®
o

k Group d — » (Xg1,.. . Xan,)
fid

Bayesian inference allows for borrowing of information

Goal: quantifying the amount of dependence
between groups already present in the prior

Catalano, Lijoi and Priinster (2021). Measuring dependence in the Wasserstein distance for Bayesian nonparametric models.
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(Classical) optimal transport

Definition. If 1, 2 probability distributions, the
Wasserstein distance is

Wo (v, v?)? = (I)I(l)i}l/l) ENX-Y|?] : X ~vandY ~v?}
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(Classical) optimal transport

Definition. If 1, 2 probability distributions, the
Wasserstein distance is

Wo (v, v?)? = (I)I(ll}l/l) ENX-Y|?] : X ~vandY ~v?}

— min {// |z — yHQd’Y(a?,y) D M HEY = v and ToFY = V2}
¥
< [NalPar@) + [ ol

Observation. Naively, makes sense if
vt 1?2 have infinite mass but finite
second moment.
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Extended Wasserstein distance

Definition. If v*, v* positive measures on R% \ {0} with
finite second moments, the Wasserstein distance is

1

W. (vt v?)? = mfyin { / |z — y||*dy(z,y) : 771#/7’]1%%1\{0} — v
and WQ#’V‘RSJ{_\{O} — VQ}

with v measure on R3¢\ {(0,0)}.

Mass on R% , x {0} and {0} x RY ,:
mass “destroyed” or “created” from
the sink/reservoir (0,0).

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with
Dirichlet boundary conditions. 11 /15
Guillen, Mou, Swiech (2019). Coupling Lévy measures and comparison principles for viscosity solutions.



Extended Wasserstein distance

Definition. If v*, v* positive measures on R% \ {0} with
finite second moments, the Wasserstein distance is

1

W. (vt v?)? = mﬁyin { / |z — y||*dy(z,y) : 771#/7‘]1%%1\{0} — v
and WQ#/.Y‘R?"_\{O} — VQ}

with v measure on R3¢\ {(0,0)}.

Mass on R% , x {0} and {0} x RY ,:
mass “destroyed” or “created” from
the sink/reservoir (0,0).

Metrizes weak convergence and
--------- : convergence of second moment with
' respect to 0 (work with I. Pinheiro).

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with
Dirichlet boundary conditions. 11 /15
Guillen, Mou, Swiech (2019). Coupling Lévy measures and comparison principles for viscosity solutions.



Building the index

First result. W, (v°°,v) can be computed
with 1d integrals of tail functions.

12/15

Catalano, Lavenant, Lijoi, Priinster (2023+). A Wasserstein index of dependence for random measures.
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I —pt Building the index

First result. W, (v°°,v) can be computed
with 1d integrals of tail functions.

Second result. If ~°© has infinite mass,

W.(v°,v) is maximized exactly for v = v+,

Define:
B W*(VCO, V)2
- Z(V) =1- W*(VCO, VJ_)Q )
It belongs to [0, 1] and satisfies:

Iy =0, T(w®)=1.

Consequence. We have an index of dependence for homogeneous
Infinitely active completely random vectors without fixed atoms,

with equal marginals and finite second moments.

Catalano, Lavenant, Lijoi, Priinster (2023+). A Wasserstein index of dependence for random measures.
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The proof of the main result (d=2)

| : Ve , VJ‘ ]: fiy W*Z(V, VCO) < WE(VJ‘,VCO)
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The proof of the main result (d=2)

[ ; 1,CO I VJ- %V W*Z(V? VCO) S W*Q(VJ‘,VCO)

Lemma. < E: ' 23)
0

The transport map from v to v<° is (s1, s2) —

with T' =4/, for v : R — R convex and «(0) = 0. An optimal
Kantorovich potential is 59 + 53
©(s1,82) = = ; 2 — u(sy + s2).
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The proof of the main result (d=2)

‘[ : ‘[ v EZ W2 (v, v°°) < W2(rt, ve°)

CO | 7 —
The transport map from v to v<¢ is (s1, s2) <T(31 N 32)>
with T' =4/, for v : R — R convex and «(0) = 0. An optimal
Kantorovich potential is 59 + 53

©(s1,82) = = ; 2 — u(sy + s2).

2(,,1L .,co
L®2<(L/ » V ) Ef j/‘¢7dl/i'-+-J/P@b(iD£O

2
‘IIQ CcO
— *(V27V )—|_/g0d(VJ__V)

/ pd(vt—v) = / u(51+52)dy(31,52)< / w(sy)dp(sy)+ / u(SQ)dy(32)>
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The proof of the main result (d=2)

[ ; 1,CO I VJ- %V W*Z(V? VCO) S W*Q(VJ‘,VCO)

Lemma. T(sy + 55)
The transport map from v to v is (s1, s2) <T(31 N 32)>

with T' =4/, for v : R — R convex and «(0) = 0. An optimal

Kantorovich potential is 59 + 83
©(s1,82) = = ; 2 — u(sy + s2).
W*Q(VlaVCO) > /gpduL _|_/¢dyco Has the right sign
2 (superadditivity of

2 CO .
_ Wi | /(‘Dd(]/J_ _ ) convex functions)

/gpd(yl—y —

/ w(51+52) dv(s1, 53)— ( / w(sy)dp(sy)+ / 1(s5)dD




Examples

Additive model
Parameter z € [0, 1],

v=(1—-2)v" 4 20

1
0.8
0.6 |
T(z
(2) . —
d=2
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Examples

Additive model
Parameter z € [0, 1],

v=(1—-2)v" 4 20

0.8
0.6 |
T(z
(2) . E—

d=2

0.2 —d=3
d=14

UO 0.2 0.4 0.6 0.8 1

Z(z) > z [ = Covariance if d = 2]

Compound random measures
Parameter ¢ measures dependence

V(S1,- .., Sd)
T S1 Sd
:/ B (——) dv? (u)
0 U U

for well chosen h?, 12,

Lijoi, Nipoti and Priinster (2014). Bayesian inference with dependent normalized completely random measures. 14/15
Griffin and Leisen (2017). Compound random measures and their use in bayesian non-parametrics.




Examples

Additive model
Parameter z € [0, 1],

Compound random measures
Parameter ¢ measures dependence

v = (1= 2)vt + 2% V(S1,.--,84)
o S1 Sd
=/ he (2, 20) dve (u)
0.8 o o
Model comparision p
0.6 |- =
| |
I(Z) 0.4 —— Compound
0.2 / 4 ||— Additive
0 0.2 )
=
=
Cd —— J—
I(z) 2 z[= = 125
—d=41
d=5
4 5
it and Loisen (2on7) 14/15




Conclusion
What is done:
- Wasserstein distance between Levy measures.
 Index of dependence between Completely Random Vectors.

What's next?:
- Study dependence in the posterior.
» Use this distance for other purposes: merging of opinions,
hypothesis testing, etc.

For this, need to extend the distance to couple both atoms and
jumps, to Cox processes.

15/15

Catalano, Lavenant (2023+). Merging Rate of Opinions via Optimal Transport on Random Measures.



Conclusion
What is done:
- Wasserstein distance between Levy measures.
 Index of dependence between Completely Random Vectors.

What's next?:
- Study dependence in the posterior.
» Use this distance for other purposes: merging of opinions,
hypothesis testing, etc.

For this, need to ex bth atoms and
Merging Rate of Opinions via

ju m pSr to Cox p roce Optimal Transport on Random Measures
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Conclusion

What is done:
- Wasserstein distance between Levy measures.
 Index of dependence between Completely Random Vectors.

What's next?:
- Study dependence in the posterior.
» Use this distance for other purposes: merging of opinions,
hypothesis testing, etc.

For this, need to extend the distance to couple both atoms and
jumps, to Cox processes.

Thank you for your attention

Catalano, Lavenant (2023+). Merging Rate of Opinions via Optimal Transport on Random Measures.
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With the Manhattan distance
(X,dx) and (), dy) metric spaces with probabilies px, py

A)
| pt = px @ py

X

>

pc H(p}(,p)})

Annex

Nies, Staudt, and Munk (2021). Transport dependency: Optimal transport based dependency measures.
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With the Manhattan distance
(X,dx) and (), dy) metric spaces with probabilies px, py
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pt = px X py

X
> Theorem.

p € l(px,py) Define Z = X x ) with

dz((r1,y1), (x2,y2)) = a dx(x1,22) + dy(y1, y2)-

Then  Wa(p.p*)? < [ [ dy(yn. ) dpy(n)dpy(y)
with equality |ffp on the graph of « -Lipschitz function.

- Defined in arbitrary metric spaces.
- Inherits properties of optimal
transport.

Nies, Staudt, and Munk (2021). Transport dependency: Optimal transport based dependency measures.
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> Theorem.
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dz((r1,y1), (x2,y2)) = a dx(x1,22) + dy(y1, y2)-

Then  Wa(p.p*)? < [ [ dy(yn. ) dpy(n)dpy(y)
with equality |ffp on the graph of « -Lipschitz function.

- Defined in arbitrary metric spaces. - Not tractable analytically.
- Inherits properties of optimal x Sampling: curse of
transport. dimensionality. Annex

Nies, Staudt, and Munk (2021). Transport dependency: Optimal transport based dependency measures.



