Harmonic mappings valued in the Wasserstein space

Hugo Lavenant ${ }^{a}$
September 19th, 2019
Diff. Geom, Math. Phys., PDE Seminar - University of British Columbia

[^0]

					-								。					
\bullet			\bullet	-	-	\bigcirc		-	\bigcirc	-				-		${ }^{\circ}$		-
			-	-	-	-		-	-	-	-		-	-		-	-	
${ }^{\circ}$.			${ }^{\circ}$	-	-	-		-	-		.		-	-		-	-	-
${ }^{\circ}$.			${ }^{\circ}$	-	-	-		-	-		-		-	-		-	-	
\cdots		,	-	\rightarrow	-	-		-	-		-		\%	-		0	-	
\cdots			${ }^{*}$	\cdots	*	-		-	-		-		-	-		-	-	
A		,	*	\rightarrow	\%	-		-	-		-		-	-		-	+	
\cdots		${ }^{*}$	*	*	\cdots	*		*	-		-		\%	\cdots		-	$+$	
*		,	*	\rightarrow	*	*		T	*		,		\%	${ }^{+}$		+	+	
*		,	*	*	*	*		t	*		*		\%	-		t	$+$	
		,	,	\pm	*	*		*	*		+		*	+		$+$	$+$	
边		,	*	,	\star	*		*	*		+		+	$+$		$+$	$+$	
													+					

Measure-valued mappings

Ω bounded set of \mathbb{R}^{n} with Lipschitz boundary, D bounded convex set of \mathbb{R}^{d}. $\mathcal{P}(D)$ set of probability measures on D, "Wasserstein space".

We study $\boldsymbol{\mu}: \Omega \rightarrow \mathcal{P}(D)$.

Measure-valued mappings

Ω bounded set of \mathbb{R}^{n} with Lipschitz boundary, D bounded convex set of \mathbb{R}^{d}. $\mathcal{P}(D)$ set of probability measures on D, "Wasserstein space".

We study $\boldsymbol{\mu}: \Omega \rightarrow \mathcal{P}(D)$.

Definition of $\operatorname{Dir}(\boldsymbol{\mu})=\frac{1}{2} \int_{\Omega}|\nabla \boldsymbol{\mu}|_{W_{2}}^{2}$ the Dirichlet energy w.r.t. quadratic Wasserstein distance.

Measure-valued mappings

Ω bounded set of \mathbb{R}^{n} with Lipschitz boundary, D bounded convex set of \mathbb{R}^{d}. $\mathcal{P}(D)$ set of probability measures on D, "Wasserstein space".

We study $\boldsymbol{\mu}: \Omega \rightarrow \mathcal{P}(D)$.

Definition of $\operatorname{Dir}(\boldsymbol{\mu})=\frac{1}{2} \int_{\Omega}|\nabla \boldsymbol{\mu}|_{W_{2}}^{2}$ the Dirichlet energy w.r.t. quadratic Wasserstein distance.

Minimizers of Dir are called harmonic mappings (valued in the Wasserstein space).

Measure-valued mappings

Ω bounded set of \mathbb{R}^{n} with Lipschitz boundary, D bounded convex set of \mathbb{R}^{d}. $\mathcal{P}(D)$ set of probability measures on D, "Wasserstein space".

We study $\boldsymbol{\mu}: \Omega \rightarrow \mathcal{P}(D)$.

Definition of $\operatorname{Dir}(\boldsymbol{\mu})=\frac{1}{2} \int_{\Omega}|\nabla \boldsymbol{\mu}|_{W_{2}}^{2}$ the Dirichlet energy w.r.t. quadratic Wasserstein distance.

Minimizers of Dir are called harmonic mappings (valued in the Wasserstein space).
If $f: \Omega \rightarrow D$ and $\boldsymbol{\mu}(\xi):=\delta_{f(\xi)}$ then $\operatorname{Dir}(\boldsymbol{\mu})=\frac{1}{2} \int_{\Omega}|\nabla f|^{2}$.

Surface mapping (solomon et. al.)

\mathcal{M} and \mathcal{N} are surfaces embedded in \mathbb{R}^{3}.
We want a map $f: \mathcal{M} \rightarrow \mathcal{N}$ with the least stretching.

Surface mapping (solomon et. al.)

\mathcal{M} and \mathcal{N} are surfaces embedded in \mathbb{R}^{3}.
We want a map $f: \mathcal{M} \rightarrow \mathcal{N}$ with the least stretching.
The constraint of being single valued is relaxed by taking $\mu: \mathcal{M} \rightarrow \mathcal{P}(\mathcal{N})$. The problem becomes convex.
$\operatorname{Dir}(\boldsymbol{\mu})=\int_{\mathcal{M}} \frac{1}{2}|\nabla \boldsymbol{\mu}|^{2}$ is a measure of the stretching of $\boldsymbol{\mu}$.

In this presentation

1. The Wasserstein space and the Dirichlet energy
2. The Dirichlet problem
3. What can be said about these harmonic mappings?

1. The Wasserstein space and the Dirichlet energy

The metric tensor in the Wasserstein space

$D \subset \mathbb{R}^{d}$ bounded convex, $\mathcal{P}(D)$ is the "Wasserstein space".

The metric tensor in the Wasserstein space

$D \subset \mathbb{R}^{d}$ bounded convex, $\mathcal{P}(D)$ is the "Wasserstein space".

The metric tensor in the Wasserstein space

$D \subset \mathbb{R}^{d}$ bounded convex, $\mathcal{P}(D)$ is the "Wasserstein space".

Vertical derivative

The metric tensor in the Wasserstein space

$D \subset \mathbb{R}^{d}$ bounded convex, $\mathcal{P}(D)$ is the "Wasserstein space".

Vertical derivative

Horizontal derivative

A particle located at x moves to $x+h \mathbf{v}(x)$

The metric tensor in the Wasserstein space

$D \subset \mathbb{R}^{d}$ bounded convex, $\mathcal{P}(D)$ is the "Wasserstein space".

Vertical derivative

$$
-\partial_{t} \mu=\nabla \cdot(\mu \mathbf{v})
$$

A particle located at x moves to $x+h \mathbf{v}(x)$

The metric tensor in the Wasserstein space

$D \subset \mathbb{R}^{d}$ bounded convex, $\mathcal{P}(D)$ is the "Wasserstein space".

Vertical derivative

$$
-\partial_{t} \mu=\nabla \cdot(\mu \mathbf{v})
$$

A particle located at x moves to $x+h \mathbf{v}(x)$

- Quadratic Optimal Transport: the square of the norm of the speed is

$$
\min _{\mathbf{v}: D \rightarrow \mathbb{R}^{d}}\left\{\int_{D}|\mathbf{v}(x)|^{2} \mu(\mathrm{~d} x): \nabla \cdot(\mu \mathbf{v})=-\partial_{t} \mu\right\}
$$

Curves valued in the Wasserstein space

If $\boldsymbol{\mu}:[0,1] \rightarrow \mathcal{P}(D)$ is given, its Dirichlet energy (or action) is

$$
\operatorname{Dir}(\boldsymbol{\mu}):=\min _{\mathbf{v}}\left\{\frac{1}{2} \int_{0}^{1} \int_{D}|\mathbf{v}|^{2} \mathrm{~d} \boldsymbol{\mu} \mathrm{~d} t: \partial_{t} \boldsymbol{\mu}+\nabla \cdot(\boldsymbol{\mu} \mathbf{v})=0\right\} .
$$

Curves valued in the Wasserstein space

If $\boldsymbol{\mu}:[0,1] \rightarrow \mathcal{P}(D)$ is given, its Dirichlet energy (or action) is

$$
\operatorname{Dir}(\boldsymbol{\mu}):=\min _{\mathbf{v}}\left\{\frac{1}{2} \int_{0}^{1} \int_{D}|\mathbf{v}|^{2} \mathrm{~d} \boldsymbol{\mu} \mathrm{~d} t: \partial_{\mathrm{t}} \boldsymbol{\mu}+\nabla \cdot(\boldsymbol{\mu} \mathbf{v})=0\right\} .
$$

The Wasserstein distance W_{2} is

$$
\frac{1}{2} W_{2}^{2}(\rho, \nu)=\min _{\mu}\left\{\operatorname{Dir}(\boldsymbol{\mu}): \boldsymbol{\mu}_{0}=\rho, \boldsymbol{\mu}_{1}=\nu\right\}
$$

Curves valued in the Wasserstein space

If $\boldsymbol{\mu}:[0,1] \rightarrow \mathcal{P}(D)$ is given, its Dirichlet energy (or action) is

$$
\operatorname{Dir}(\boldsymbol{\mu}):=\min _{\mathbf{v}}\left\{\frac{1}{2} \int_{0}^{1} \int_{D}|\mathbf{v}|^{2} \mathrm{~d} \boldsymbol{\mu} \mathrm{~d} t: \partial_{\mathrm{t}} \boldsymbol{\mu}+\nabla \cdot(\boldsymbol{\mu} \mathbf{v})=0\right\} .
$$

The Wasserstein distance W_{2} is

$$
\frac{1}{2} W_{2}^{2}(\rho, \nu)=\min _{\mu}\left\{\operatorname{Dir}(\boldsymbol{\mu}): \boldsymbol{\mu}_{0}=\rho, \boldsymbol{\mu}_{1}=\nu\right\}
$$

and the minimizers are the constant-speed geodesics.

The Dirichlet energy

Definition (Brenier (2003))

If $\mu: \Omega \rightarrow \mathcal{P}(D)$ is given,

$$
\operatorname{Dir}(\boldsymbol{\mu}):=\min _{\mathbf{v}}\left\{\frac{1}{2} \int_{\Omega} \int_{D}|\mathbf{v}|^{2} \mathrm{~d} \boldsymbol{\mu}: \nabla_{\Omega} \boldsymbol{\mu}+\nabla_{D} \cdot(\boldsymbol{\mu} \mathbf{v})=0\right\}
$$

where $\mathbf{v}: \Omega \times D \rightarrow \mathbb{R}^{\text {nd }}$.
If $\Omega=[0,1]$ it coincides with the previous definition.

A definition in arbitrary metric space

If $f: \Omega \rightarrow \mathbb{R}$ is smooth,

$$
\operatorname{Dir}(f)=\int_{\Omega}|\nabla f(\xi)|^{2} \mathrm{~d} \xi=
$$

$$
\frac{|f(\xi)-f(\eta)|^{2}}{\varepsilon^{2}}
$$

A definition in arbitrary metric space

If $f: \Omega \rightarrow \mathbb{R}$ is smooth,

$$
\operatorname{Dir}(f)=\int_{\Omega}|\nabla f(\xi)|^{2} \mathrm{~d} \xi=\quad \frac{1}{\varepsilon^{n}} \int_{\Omega} \frac{|f(\xi)-f(\eta)|^{2}}{\varepsilon^{2}} \mathbb{1}_{|\xi-\eta| \leqslant \varepsilon} \mathrm{d} \eta
$$

A definition in arbitrary metric space

If $f: \Omega \rightarrow \mathbb{R}$ is smooth,

$$
\operatorname{Dir}(f)=\int_{\Omega}|\nabla f(\xi)|^{2} \mathrm{~d} \xi=\quad \frac{C_{n}}{2} \int_{\Omega} \frac{1}{\varepsilon^{n}} \int_{\Omega} \frac{|f(\xi)-f(\eta)|^{2}}{\varepsilon^{2}} \mathbb{1}_{|\xi-\eta| \leqslant \varepsilon} \mathrm{d} \eta \mathrm{~d} \xi
$$

A definition in arbitrary metric space

If $f: \Omega \rightarrow \mathbb{R}$ is smooth,

$$
\operatorname{Dir}(f)=\int_{\Omega}|\nabla f(\xi)|^{2} \mathrm{~d} \xi=\lim _{\varepsilon \rightarrow 0}\left(\frac{C_{n}}{2} \int_{\Omega} \frac{1}{\varepsilon^{n}} \int_{\Omega} \frac{|f(\xi)-f(\eta)|^{2}}{\varepsilon^{2}} \mathbb{1}_{|\xi-\eta| \leqslant \varepsilon} \mathrm{d} \eta \mathrm{~d} \xi\right)
$$

A definition in arbitrary metric space

If $f: \Omega \rightarrow \mathbb{R}$ is smooth,

$$
\operatorname{Dir}(f)=\int_{\Omega}|\nabla f(\xi)|^{2} \mathrm{~d} \xi=\lim _{\varepsilon \rightarrow 0}\left(\frac{C_{n}}{2} \int_{\Omega} \frac{1}{\varepsilon^{n}} \int_{\Omega} \frac{|f(\xi)-f(\eta)|^{2}}{\varepsilon^{2}} \mathbb{1}_{|\xi-\eta| \leqslant \varepsilon} \mathrm{d} \eta \mathrm{~d} \xi\right)
$$

Definition (Korevaar and Schoen (1993), Jost (1994))

If (X, δ) is a separable metric space and $f: \Omega \rightarrow X$, then

$$
\operatorname{Dir}_{\varepsilon}(f)=\frac{C_{n}}{2 \varepsilon^{n+2}} \iint_{\Omega \times \Omega} \delta(f(\xi), f(\eta))^{2} \mathbb{1}_{|\xi-\eta| \leqslant \varepsilon} \mathrm{d} \xi \mathrm{~d} \eta .
$$

The Dirichlet energy of f is then defined as the limit of $\operatorname{Dir}_{\varepsilon}(f)$ when ε goes to 0 .

A definition in arbitrary metric space

If $f: \Omega \rightarrow \mathbb{R}$ is smooth,

$$
\operatorname{Dir}(f)=\int_{\Omega}|\nabla f(\xi)|^{2} \mathrm{~d} \xi=\lim _{\varepsilon \rightarrow 0}\left(\frac{C_{n}}{2} \int_{\Omega} \frac{1}{\varepsilon^{n}} \int_{\Omega} \frac{|f(\xi)-f(\eta)|^{2}}{\varepsilon^{2}} \mathbb{1}_{|\xi-\eta| \leqslant \varepsilon} \mathrm{d} \eta \mathrm{~d} \xi\right)
$$

Definition (Korevaar and Schoen (1993), Jost (1994))

If (X, δ) is a separable metric space and $f: \Omega \rightarrow X$, then

$$
\operatorname{Dir}_{\varepsilon}(f)=\frac{C_{n}}{2 \varepsilon^{n+2}} \iint_{\Omega \times \Omega} \delta(f(\xi), f(\eta))^{2} \mathbb{1}_{|\xi-\eta| \leqslant \varepsilon} \mathrm{d} \xi \mathrm{~d} \eta .
$$

The Dirichlet energy of f is then defined as the limit of $\operatorname{Dir}_{\varepsilon}(f)$ when ε goes to 0 .

Defined in arbitrary metric spaces but the analysis can be carried out only for spaces of NonPositive Curvature. $\left(\mathcal{P}(D), W_{2}\right)$ has a positive curvature.

Equivalence of the definitions

If $\boldsymbol{\mu}: \Omega \rightarrow \mathcal{P}(D)$, one sets

$$
\operatorname{Dir}_{\varepsilon}(\boldsymbol{\mu}):=\frac{C_{n}}{2 \varepsilon^{n+2}} \iint_{\Omega \times \Omega} W_{2}^{2}(\boldsymbol{\mu}(\xi), \boldsymbol{\mu}(\eta)) \mathbb{1}_{|\xi-\eta| \leqslant \varepsilon} \mathrm{d} \xi \mathrm{~d} \eta .
$$

Equivalence of the definitions

If $\boldsymbol{\mu}: \Omega \rightarrow \mathcal{P}(D)$, one sets

$$
\operatorname{Dir}_{\varepsilon}(\boldsymbol{\mu}):=\frac{C_{n}}{2 \varepsilon^{n+2}} \iint_{\Omega \times \Omega} W_{2}^{2}(\boldsymbol{\mu}(\xi), \boldsymbol{\mu}(\eta)) \mathbb{1}_{|\xi-\eta| \leqslant \varepsilon} \mathrm{d} \xi \mathrm{~d} \eta .
$$

Theorem

One has

$$
\lim _{\varepsilon \rightarrow 0} \operatorname{Dir}_{\varepsilon}=\text { Dir, }
$$

and the convergence holds pointwisely and in the sense of Γ-convergence along the sequence $\varepsilon_{m}=2^{-m}$.

The space $\{\boldsymbol{\mu}: \operatorname{Dir}(\boldsymbol{\mu})<+\infty\}$ coincides with $H^{1}(\Omega, \mathcal{P}(D))$ for the standard definitions of Sobolev spaces in metric spaces (reshetnyak, halkasz).

Curvature and convexity

If $\mu, \nu \in \mathcal{P}(D)$, two ways to interpolate.

Curvature and convexity

If $\mu, \nu \in \mathcal{P}(D)$, two ways to interpolate.

The displacement interpolation

- Midpoint of the geodesic in the Wasserstein space.
- The space $\left(\mathcal{P}(D), W_{2}\right)$ is a positively curved space: no convexity of W_{2}^{2} nor Dir.

Curvature and convexity

If $\mu, \nu \in \mathcal{P}(D)$, two ways to interpolate.

The displacement interpolation

- Midpoint of the geodesic in the Wasserstein space.
- The space $\left(\mathcal{P}(D), W_{2}\right)$ is a positively curved space: no convexity of W_{2}^{2} nor Dir.
- The Wasserstein distance square W_{2}^{2} and the Dirichlet energy are convex.
- Tools from convex analysis.

2. The Dirichlet problem

The Dirichlet problem

We choose $\mu_{b}: \partial \Omega \rightarrow \mathcal{P}(D)$ the boundary data.

Definition

The Dirichlet problem is

$$
\min _{\boldsymbol{\mu}}\left\{\operatorname{Dir}(\boldsymbol{\mu}): \boldsymbol{\mu}=\boldsymbol{\mu}_{b} \text { on } \partial \Omega\right\} .
$$

The solutions of the Dirichlet problem are called harmonic mappings (valued in the Wasserstein space).

The Dirichlet problem

We choose $\mu_{b}: \partial \Omega \rightarrow \mathcal{P}(D)$ the boundary data.

Definition

The Dirichlet problem is

$$
\min _{\boldsymbol{\mu}}\left\{\operatorname{Dir}(\boldsymbol{\mu}): \boldsymbol{\mu}=\boldsymbol{\mu}_{b} \text { on } \partial \Omega\right\} .
$$

The solutions of the Dirichlet problem are called harmonic mappings (valued in the Wasserstein space).

Theorem

Assume $\boldsymbol{\mu}_{b}: \partial \Omega \rightarrow\left(\mathcal{P}(D), W_{2}\right)$ is a Lipschitz mapping. Then there exists at least one solution to the Dirichlet problem.

Tool: extension theorem for Lipschitz mappings valued in $\left(\mathcal{P}(D), W_{2}\right)$. Uniqueness is an open question.

Numerics: example

		-				- 0						
-												-
\bigcirc												-
-												-
${ }^{\circ}$												-
*												-
*		-										+
*												+
*								\square				+
*												+
*												+
*												+
㐫												+
		*	*	*	*	*	+	+	$+$			

Numerics: example

	-	-	${ }^{\circ}$		-	-	\bigcirc	-		\%	\bigcirc	-		,		
					-		-	-		-	-	-		-		
					-	-	-	-		-	-					
\circ_{6}°	${ }^{\circ}$		${ }^{\circ}$		${ }^{\circ}$		-	-		-	-					
${ }_{\square}^{\circ}$	${ }^{\circ}$				-		*			-	-					
	${ }^{\circ}$		${ }^{6}$		${ }^{6}$	-	\%	-		-	-					
	${ }^{*}$				${ }^{6}$	\%	*	\%		-	-					
	\cdots		${ }_{*}$		*	*	\%			-	-			\cdot		
	*				\rightarrow		,			-	-					
	${ }_{*}$				\%	\%	-				-					
	*		,		*	,	*			T	-					
	家				t	*	*			T						

Numerics: convex optimization à la Benamou and Brenier

Numerics: convex optimization à la Benamou and Brenier

Primal Problem

Unknowns ($\mathrm{m}=\mu \mathrm{v}$ momentum):

$$
\begin{gathered}
\boldsymbol{\mu}: \Omega \times D \rightarrow \mathbb{R}_{+} \\
\mathbf{m}: \Omega \times D \rightarrow \mathbb{R}^{n d}
\end{gathered}
$$

Numerics: convex optimization à la Benamou and Brenier

Primal Problem

Unknowns ($\mathrm{m}=\mu \mathrm{v}$ momentum):

$$
\begin{gathered}
\boldsymbol{\mu}: \Omega \times D \rightarrow \mathbb{R}_{+} \\
\mathbf{m}: \Omega \times D \rightarrow \mathbb{R}^{n d}
\end{gathered}
$$

Objective

$$
\min _{\mu, \mathbf{m}}\left\{\iint_{\Omega \times D} \frac{|\mathbf{m}|^{2}}{2 \boldsymbol{\mu}}\right\}
$$

Numerics: convex optimization à la Benamou and Brenier

Primal Problem

Unknowns ($\mathrm{m}=\mu \mathrm{v}$ momentum):

$$
\begin{gathered}
\boldsymbol{\mu}: \Omega \times D \rightarrow \mathbb{R}_{+} \\
\mathbf{m}: \Omega \times D \rightarrow \mathbb{R}^{n d}
\end{gathered}
$$

Objective

$$
\min _{\mu, \mathbf{m}}\left\{\iint_{\Omega \times D} \frac{|\mathbf{m}|^{2}}{2 \boldsymbol{\mu}}\right\}
$$

under the constraints

$$
\left\{\begin{array}{l}
\nabla_{\Omega} \boldsymbol{\mu}+\nabla_{D} \cdot \mathbf{m}=0, \\
\boldsymbol{\mu}=\boldsymbol{\mu}_{b} \text { on } \partial \Omega
\end{array}\right.
$$

Numerics: convex optimization à la Benamou and Brenier

Primal Problem

Unknowns ($\mathrm{m}=\mu \mathrm{v}$ momentum):

$$
\begin{gathered}
\mu: \Omega \times D \rightarrow \mathbb{R}_{+} \\
\mathrm{m}: \Omega \times D \rightarrow \mathbb{R}^{n d}
\end{gathered}
$$

Objective

$$
\min _{\mu, \mathbf{m}}\left\{\iint_{\Omega \times D} \frac{|\mathbf{m}|^{2}}{2 \boldsymbol{\mu}}\right\},
$$

under the constraints

$$
\left\{\begin{array}{l}
\nabla_{\Omega} \boldsymbol{\mu}+\nabla_{D} \cdot \mathbf{m}=0, \\
\boldsymbol{\mu}=\boldsymbol{\mu}_{b} \text { on } \partial \Omega
\end{array}\right.
$$

Dual Problem
Unknown:
$\varphi: \Omega \times D \rightarrow \mathbb{R}^{n}$

Numerics: convex optimization à la Benamou and Brenier

Primal Problem

Unknowns ($\mathrm{m}=\mu \mathrm{v}$ momentum):

$$
\begin{gathered}
\mu: \Omega \times D \rightarrow \mathbb{R}_{+} \\
\mathbf{m}: \Omega \times D \rightarrow \mathbb{R}^{n d}
\end{gathered}
$$

Objective

$$
\min _{\mu, \mathbf{m}}\left\{\iint_{\Omega \times D} \frac{|\mathbf{m}|^{2}}{2 \mu}\right\}
$$

under the constraints

$$
\left\{\begin{array}{l}
\nabla_{\Omega} \boldsymbol{\mu}+\nabla_{D} \cdot \mathbf{m}=0, \\
\boldsymbol{\mu}=\boldsymbol{\mu}_{b} \text { on } \partial \Omega
\end{array}\right.
$$

Dual Problem
Unknown:

$$
\varphi: \Omega \times D \rightarrow \mathbb{R}^{n}
$$

Objective

$$
\max _{\varphi}\left\{\int_{\partial \Omega} \int_{D} \varphi(\xi, \cdot) \cdot \mathbf{n}_{\Omega}(\xi) \boldsymbol{\mu}_{b}(\xi) \mathrm{d} \xi\right\},
$$

Numerics: convex optimization à la Benamou and Brenier

Primal Problem

Unknowns ($\mathrm{m}=\mu \mathrm{v}$ momentum):

$$
\begin{gathered}
\mu: \Omega \times D \rightarrow \mathbb{R}_{+} \\
\mathbf{m}: \Omega \times D \rightarrow \mathbb{R}^{n d}
\end{gathered}
$$

Objective

$$
\min _{\mu, \mathbf{m}}\left\{\iint_{\Omega \times D} \frac{|\mathbf{m}|^{2}}{2 \mu}\right\}
$$

under the constraints

$$
\left\{\begin{array}{l}
\nabla_{\Omega} \boldsymbol{\mu}+\nabla_{D} \cdot \mathbf{m}=0, \\
\boldsymbol{\mu}=\boldsymbol{\mu}_{b} \text { on } \partial \Omega
\end{array}\right.
$$

Dual Problem

Unknown:

$$
\varphi: \Omega \times D \rightarrow \mathbb{R}^{n}
$$

Objective
$\max _{\varphi}\left\{\int_{\partial \Omega} \int_{D} \varphi(\xi, \cdot) \cdot \mathbf{n}_{\Omega}(\xi) \boldsymbol{\mu}_{\mathrm{b}}(\xi) \mathrm{d} \xi\right\}$, under the constraint

$$
\nabla_{\Omega} \cdot \varphi+\frac{1}{2}\left|\nabla_{D \varphi}\right|^{2} \leqslant 0 .
$$

Numerics: convex optimization à la Benamou and Brenier

Primal Problem

Unknowns ($\mathrm{m}=\mu \mathrm{v}$ momentum):

$$
\begin{gathered}
\mu: \Omega \times D \rightarrow \mathbb{R}_{+} \\
\mathbf{m}: \Omega \times D \rightarrow \mathbb{R}^{n d}
\end{gathered}
$$

Objective

$$
\min _{\mu, \mathbf{m}}\left\{\iint_{\Omega \times D} \frac{|\mathbf{m}|^{2}}{2 \mu}\right\}
$$

under the constraints

$$
\left\{\begin{array}{l}
\nabla_{\Omega} \boldsymbol{\mu}+\nabla_{D} \cdot \mathbf{m}=0, \\
\boldsymbol{\mu}=\boldsymbol{\mu}_{b} \text { on } \partial \Omega
\end{array}\right.
$$

In practice: finite-dimensional "approximation" then ADMM.

3. What can be said about these harmonic mappings?

Geodesically convex functionals

On the Wasserstein space there exists $F: \mathcal{P}(D) \rightarrow \mathbb{R}$ convex along (generalized) geodesics. For instance:

Geodesically convex functionals

On the Wasserstein space there exists $F: \mathcal{P}(D) \rightarrow \mathbb{R}$ convex along (generalized) geodesics. For instance:

- The potential energies, e.g.

$$
\mu \mapsto \int_{D}|x|^{2} \mathrm{~d} \mu(x) .
$$

Geodesically convex functionals

On the Wasserstein space there exists $F: \mathcal{P}(D) \rightarrow \mathbb{R}$ convex along (generalized) geodesics. For instance:

- The potential energies, e.g.

$$
\mu \mapsto \int_{D}|x|^{2} \mathrm{~d} \mu(x) .
$$

- The interaction energies, e.g.

$$
\mu \mapsto \iint_{D \times D}|x-y|^{2} \mathrm{~d} \mu(x) \mathrm{d} \mu(y) .
$$

Geodesically convex functionals

On the Wasserstein space there exists $F: \mathcal{P}(D) \rightarrow \mathbb{R}$ convex along (generalized) geodesics. For instance:

- The potential energies, e.g.

$$
\mu \mapsto \int_{D}|x|^{2} \mathrm{~d} \mu(x)
$$

- The interaction energies, e.g.

$$
\mu \mapsto \iint_{D \times D}|x-y|^{2} \mathrm{~d} \mu(x) \mathrm{d} \mu(y) .
$$

- The internal energies, e.g.

$$
\mu \mapsto \begin{cases}\int_{D} \mu \ln \mu & \text { if } \mu \text { has a density w.r.t. Lebesgue } \\ +\infty & \text { else }\end{cases}
$$

Maximum principle

Maximum principle

Theorem

Take $F: \mathcal{P}(D) \rightarrow \mathbb{R} \cup\{+\infty\}$ convex along generalized geodesics (and few additional regularity property) and a boundary condition $\mu_{b}: \partial \Omega \rightarrow \mathcal{P}(D)$ such that $\sup _{\partial \Omega}\left(F \circ \boldsymbol{\mu}_{b}\right)<+\infty$.

Maximum principle

Theorem

Take $F: \mathcal{P}(D) \rightarrow \mathbb{R} \cup\{+\infty\}$ convex along generalized geodesics (and few additional regularity property) and a boundary condition $\mu_{b}: \partial \Omega \rightarrow \mathcal{P}(D)$ such that $\sup _{\partial \Omega}\left(F \circ \boldsymbol{\mu}_{b}\right)<+\infty$.

Then there exists at least one solution μ of the Dirichlet problem with boundary conditions μ_{b} such that

$$
\Delta(F \circ \boldsymbol{\mu}) \geqslant 0 \quad \text { and } \quad \quad \operatorname{ess} \sup _{\Omega}(F \circ \boldsymbol{\mu}) \leqslant \sup _{\partial \Omega}\left(F \circ \boldsymbol{\mu}_{b}\right)
$$

Maximum principle

Theorem

Take $F: \mathcal{P}(D) \rightarrow \mathbb{R} \cup\{+\infty\}$ convex along generalized geodesics (and few additional regularity property) and a boundary condition $\mu_{b}: \partial \Omega \rightarrow \mathcal{P}(D)$ such that $\sup \left(F \circ \mu_{b}\right)<+\infty$. $\partial \Omega$
Then there exists at least one solution μ of the Dirichlet problem with boundary conditions μ_{b} such that

$$
\Delta(F \circ \boldsymbol{\mu}) \geqslant 0 \quad \text { and } \quad \quad \operatorname{ess} \sup _{\Omega}(F \circ \boldsymbol{\mu}) \leqslant \sup _{\partial \Omega}\left(F \circ \boldsymbol{\mu}_{b}\right)
$$

Already known for harmonic mappings valued in Riemannian manifolds (Ishinara) and Non Positively Curved spaces (Sturm).

Idea of the proof

First replace Dir by the approximate Dirichlet energies $\operatorname{Dir}_{\varepsilon}$.

Idea of the proof

First replace Dir by the approximate Dirichlet energies $\operatorname{Dir}_{\varepsilon}$.
If $\boldsymbol{\mu}_{\varepsilon}$ minimizes $\operatorname{Dir}_{\varepsilon}$, then for a.e. $\xi \in \Omega$, the measure $\boldsymbol{\mu}_{\varepsilon}(\xi)$ is a (Wasserstein) barycenter of the $\boldsymbol{\mu}_{\varepsilon}(\eta)$ for $\eta \in B(\xi, \varepsilon)$.

Idea of the proof

First replace Dir by the approximate Dirichlet energies $\operatorname{Dir}_{\varepsilon}$.
If $\boldsymbol{\mu}_{\varepsilon}$ minimizes $\operatorname{Dir}_{\varepsilon}$, then for a.e. $\xi \in \Omega$, the measure $\boldsymbol{\mu}_{\varepsilon}(\xi)$ is a (Wasserstein) barycenter of the $\boldsymbol{\mu}_{\varepsilon}(\eta)$ for $\eta \in B(\xi, \varepsilon)$.

Jensen inequality for Wasserstein barycenters (Agueh, Carlier):

$$
F\left(\boldsymbol{\mu}_{\varepsilon}(\xi)\right) \leqslant f_{B(\xi, \varepsilon)} F\left(\boldsymbol{\mu}_{\varepsilon}(\eta)\right) \mathrm{d} \eta .
$$

Idea of the proof

First replace Dir by the approximate Dirichlet energies $\operatorname{Dir}_{\varepsilon}$.
If $\boldsymbol{\mu}_{\varepsilon}$ minimizes $\operatorname{Dir}_{\varepsilon}$, then for a.e. $\xi \in \Omega$, the measure $\boldsymbol{\mu}_{\varepsilon}(\xi)$ is a (Wasserstein) barycenter of the $\boldsymbol{\mu}_{\varepsilon}(\eta)$ for $\eta \in B(\xi, \varepsilon)$.

Jensen inequality for Wasserstein barycenters (Аguen, Carlier):

$$
F\left(\boldsymbol{\mu}_{\varepsilon}(\xi)\right) \leqslant f_{B(\xi, \varepsilon)} F\left(\boldsymbol{\mu}_{\varepsilon}(\eta)\right) \mathrm{d} \eta .
$$

Then limit $\varepsilon \rightarrow 0$ to get subharmonicity.

Case of delta functions

Assume $\boldsymbol{\mu}_{b}(\xi)=\delta_{f_{b}(\xi)}$.

Case of delta functions

Assume $\boldsymbol{\mu}_{b}(\xi)=\delta_{f_{b}(\xi)}$. Then $\boldsymbol{\mu}(\xi)=\delta_{f(\xi)}$ where f is the (usual) harmonic extension of f_{b}.
Indeed the variance satisfies a maximum principle.

Case of Gaussian measures

Family of "elliptically contoured distributions" $\mathcal{P}_{e c}(D)$, think Gaussians measures.

Case of Gaussian measures

Family of "elliptically contoured distributions" $\mathcal{P}_{\text {ec }}(D)$, think Gaussians measures.

					${ }^{1}$	1					,			
,				${ }^{2}$	8	8	,				,			
		\pm		\triangle	\square	8					-			
-		-		\bullet	\bigcirc	\bigcirc			\bullet		\bullet	\bullet		
		-		\bullet	\bullet	\bullet					\bullet			
				\bullet	-	\bullet	-		\bullet		\bullet			
				-	-	-	-		-		-			
				-	\bullet	\bullet	,		-	-	-			
		\bullet		\bullet	-	\bullet			-	-	\square	-		
				\bullet	\bullet	\bullet				-	\square	\bigcirc		
		,		\bullet	θ	-			+	-	\square	\triangle		
					8						0			

Case of Gaussian measures

Family of "elliptically contoured distributions" $\mathcal{P}_{e c}(D)$, think Gaussians measures.

Theorem

Let $\boldsymbol{\mu}_{b}: \partial \Omega \rightarrow \mathcal{P}_{\text {ec }}(D)$ Lipschitz such that $\boldsymbol{\mu}_{b}(\xi)$ is not singular for every $\xi \in \partial \Omega$.

Case of Gaussian measures

Family of "elliptically contoured distributions" $\mathcal{P}_{e c}(D)$, think Gaussians measures.

Theorem

Let $\boldsymbol{\mu}_{b}: \partial \Omega \rightarrow \mathcal{P}_{\text {ec }}(D)$ Lipschitz such that $\boldsymbol{\mu}_{b}(\xi)$ is not singular for every $\xi \in \partial \Omega$.

Then there exists a unique solution to the Dirichlet problem, it is valued in $\mathcal{P}_{\text {ec }}(D)$ and it is smooth.

Thank you for your attention

									-								
					\bullet	-	${ }^{\circ}$		-			-	8				
-		${ }^{\circ}$			\bullet	-			-	-		-					
0_{4}									-	-		-	-			-	
0_{a}					${ }^{\circ}$	-			-								
					,				-	-		-	-				
					*	*	-		-	-		-					
t_{a}					\cdots				-	-		-				-	
					*				*			-				+	
ψ_{π}		*	*	*	\%	\%	,		-	\%		-			-	+	
			,		\%		-		\%			-	-			$+$	
			*	\%	*		\%		\cdots			\bullet					
												$+$					

[^0]: ${ }^{a}$ Department of Mathematics, University of British Columbia

