Harmonic mappings valued in the Wasserstein space

Hugo Lavenant^a September 19th, 2019

Diff. Geom, Math. Phys., PDE Seminar – University of British Columbia

^aDepartment of Mathematics, University of British Columbia

•.	•	•	•	•	•	00	00	00	2	0	0	۲	۲
*													۲
*													٨
*													٩
**													4
**													\$
A													\$
P.													*
A													*
*A													٠
*x													*
×													+
*													+
\star	\star	*	*	\star	★	*	*	*	*	+	+	+	+

 Ω bounded set of \mathbb{R}^n with Lipschitz boundary, D bounded convex set of \mathbb{R}^d . $\mathcal{P}(D)$ set of probability measures on D, "Wasserstein space". We study $\mu : \Omega \to \mathcal{P}(D)$.

 Ω bounded set of \mathbb{R}^n with Lipschitz boundary, *D* bounded convex set of \mathbb{R}^d . $\mathcal{P}(D)$ set of probability measures on *D*, "Wasserstein space". We study $\mu : \Omega \to \mathcal{P}(D)$.

Definition of $Dir(\mu) = \frac{1}{2} \int_{\Omega} |\nabla \mu|^2_{W_2}$ the **Dirichlet energy** w.r.t. quadratic Wasserstein distance.

 Ω bounded set of \mathbb{R}^n with Lipschitz boundary, *D* bounded convex set of \mathbb{R}^d . $\mathcal{P}(D)$ set of probability measures on *D*, "Wasserstein space". We study $\mu : \Omega \to \mathcal{P}(D)$.

Definition of $Dir(\mu) = \frac{1}{2} \int_{\Omega} |\nabla \mu|^2_{W_2}$ the **Dirichlet energy** w.r.t. quadratic Wasserstein distance.

Minimizers of Dir are called harmonic mappings (valued in the Wasserstein space).

 Ω bounded set of \mathbb{R}^n with Lipschitz boundary, *D* bounded convex set of \mathbb{R}^d . $\mathcal{P}(D)$ set of probability measures on *D*, "Wasserstein space". We study $\mu : \Omega \to \mathcal{P}(D)$.

Definition of $Dir(\mu) = \frac{1}{2} \int_{\Omega} |\nabla \mu|^2_{W_2}$ the **Dirichlet energy** w.r.t. quadratic Wasserstein distance.

Minimizers of Dir are called harmonic mappings (valued in the Wasserstein space).

If
$$f: \Omega \to D$$
 and $\mu(\xi) := \delta_{f(\xi)}$ then $\operatorname{Dir}(\mu) = \frac{1}{2} \int_{\Omega} |\nabla f|^2$.

Surface mapping (SOLOMON ET. AL.)

 ${\mathcal M}$ and ${\mathcal N}$ are surfaces embedded in ${\mathbb R}^3.$

We want a map $f: \mathcal{M} \to \mathcal{N}$ with the least stretching.

Surface mapping (SOLOMON ET. AL.)

 ${\mathcal M}$ and ${\mathcal N}$ are surfaces embedded in ${\mathbb R}^3.$

We want a map $f: \mathcal{M} \to \mathcal{N}$ with the least stretching.

The constraint of being single valued is relaxed by taking $\mu : \mathcal{M} \to \mathcal{P}(\mathcal{N})$. The problem becomes *convex*.

 $\mathrm{Dir}(\mu) = \int_{\mathcal{M}} \frac{1}{2} |
abla \mu|^2$ is a measure of the stretching of μ .

1. The Wasserstein space and the Dirichlet energy

2. The Dirichlet problem

3. What can be said about these harmonic mappings?

1. The Wasserstein space and the Dirichlet energy

 $D \subset \mathbb{R}^d$ bounded convex, $\mathcal{P}(D)$ is the "Wasserstein space".

 $D \subset \mathbb{R}^d$ bounded convex, $\mathcal{P}(D)$ is the "Wasserstein space".

 $\mathit{D} \subset \mathbb{R}^d$ bounded convex, $\mathcal{P}(\mathit{D})$ is the "Wasserstein space".

 $\textit{D} \subset \mathbb{R}^d$ bounded convex, $\mathcal{P}(\textit{D})$ is the "Wasserstein space".

 $D \subset \mathbb{R}^d$ bounded convex, $\mathcal{P}(D)$ is the "Wasserstein space".

 $D \subset \mathbb{R}^d$ bounded convex, $\mathcal{P}(D)$ is the "Wasserstein space".

• Quadratic Optimal Transport: the square of the norm of the speed is

$$\min_{\mathbf{v}: \mathcal{D} \to \mathbb{R}^d} \left\{ \int_{\mathcal{D}} |\mathbf{v}(x)|^2 \ \mu(\mathrm{d} x) \ : \ \nabla \cdot (\mu \mathbf{v}) = -\partial_t \mu \right\}.$$

If $\boldsymbol{\mu}:[0,1] \to \mathcal{P}(D)$ is given, its Dirichlet energy (or **action**) is

$$\operatorname{Dir}(\boldsymbol{\mu}) := \min_{\mathbf{v}} \left\{ \frac{1}{2} \int_0^1 \int_{\mathcal{D}} |\mathbf{v}|^2 \, \mathrm{d}\boldsymbol{\mu} \, \mathrm{d}t : \partial_t \boldsymbol{\mu} + \nabla \cdot (\boldsymbol{\mu} \mathbf{v}) = 0 \right\}.$$

If $\mu : [0,1] \rightarrow \mathcal{P}(D)$ is given, its Dirichlet energy (or **action**) is

$$\operatorname{Dir}(\boldsymbol{\mu}) := \min_{\mathbf{v}} \left\{ \frac{1}{2} \int_0^1 \int_{\mathcal{D}} |\mathbf{v}|^2 \, \mathrm{d}\boldsymbol{\mu} \, \mathrm{d}t : \partial_t \boldsymbol{\mu} + \nabla \cdot (\boldsymbol{\mu} \mathbf{v}) = 0 \right\}.$$

The Wasserstein distance W_2 is

$$\frac{1}{2}W_2^2(\rho,\nu) = \min_{\mu} \left\{ \text{Dir}(\mu) : \mu_0 = \rho, \ \mu_1 = \nu \right\},\$$

If $\mu : [0,1] \rightarrow \mathcal{P}(D)$ is given, its Dirichlet energy (or **action**) is

$$\operatorname{Dir}(\boldsymbol{\mu}) := \min_{\mathbf{v}} \left\{ \frac{1}{2} \int_0^1 \int_{\mathcal{D}} |\mathbf{v}|^2 \, \mathrm{d}\boldsymbol{\mu} \, \mathrm{d}t : \partial_t \boldsymbol{\mu} + \nabla \cdot (\boldsymbol{\mu} \mathbf{v}) = 0 \right\}.$$

The Wasserstein distance W_2 is

$$\frac{1}{2}W_2^2(\rho,\nu) = \min_{\mu} \left\{ \text{Dir}(\mu) : \mu_0 = \rho, \ \mu_1 = \nu \right\},\$$

and the minimizers are the constant-speed geodesics.

Definition (BRENIER (2003))

If $\boldsymbol{\mu}:\Omega \to \mathcal{P}(D)$ is given,

$$\operatorname{Dir}(\boldsymbol{\mu}) := \min_{\mathbf{v}} \left\{ \frac{1}{2} \int_{\Omega} \int_{D} |\mathbf{v}|^2 d\boldsymbol{\mu} : \nabla_{\Omega} \boldsymbol{\mu} + \nabla_{D} \cdot (\boldsymbol{\mu} \mathbf{v}) = 0 \right\},$$

where $\mathbf{v}: \Omega \times D \rightarrow \mathbb{R}^{nd}$.

If $\Omega = [0,1]$ it coincides with the previous definition.

$$\mathrm{Dir}(f) = \int_{\Omega} |\nabla f(\xi)|^2 \mathrm{d}\xi =$$

$$\frac{|f(\xi) - f(\eta)|^2}{\varepsilon^2}$$

$$\operatorname{Dir}(f) = \int_{\Omega} |\nabla f(\xi)|^2 \mathrm{d}\xi =$$

$$\frac{1}{\varepsilon^n}\int_\Omega \frac{|f(\xi)-f(\eta)|^2}{\varepsilon^2}\mathbbm{1}_{|\xi-\eta|\leqslant\varepsilon}\,\mathrm{d}\eta$$

$$\operatorname{Dir}(f) = \int_{\Omega} |\nabla f(\xi)|^2 \mathrm{d}\xi = \frac{C_n}{2} \int_{\Omega} \frac{1}{\varepsilon^n} \int_{\Omega} \frac{|f(\xi) - f(\eta)|^2}{\varepsilon^2} \mathbb{1}_{|\xi - \eta| \leqslant \varepsilon} \,\mathrm{d}\eta \,\mathrm{d}\xi$$

$$\operatorname{Dir}(f) = \int_{\Omega} |\nabla f(\xi)|^2 \mathrm{d}\xi = \lim_{\varepsilon \to 0} \left(\frac{C_n}{2} \int_{\Omega} \frac{1}{\varepsilon^n} \int_{\Omega} \frac{|f(\xi) - f(\eta)|^2}{\varepsilon^2} \mathbb{1}_{|\xi - \eta| \leqslant \varepsilon} \, \mathrm{d}\eta \, \mathrm{d}\xi \right)$$

If $f:\Omega \to \mathbb{R}$ is smooth,

$$\operatorname{Dir}(f) = \int_{\Omega} |\nabla f(\xi)|^2 \mathrm{d}\xi = \lim_{\varepsilon \to 0} \left(\frac{C_n}{2} \int_{\Omega} \frac{1}{\varepsilon^n} \int_{\Omega} \frac{|f(\xi) - f(\eta)|^2}{\varepsilon^2} \mathbb{1}_{|\xi - \eta| \leqslant \varepsilon} \, \mathrm{d}\eta \, \mathrm{d}\xi \right)$$

Definition (Korevaar and Schoen (1993), Jost (1994))

If (X, δ) is a separable metric space and $f : \Omega \to X$, then

$$\operatorname{Dir}_{\varepsilon}(f) = \frac{C_n}{2\varepsilon^{n+2}} \iint_{\Omega \times \Omega} \delta(f(\xi), f(\eta))^2 \mathbb{1}_{|\xi - \eta| \leqslant \varepsilon} \mathrm{d}\xi \mathrm{d}\eta.$$

The Dirichlet energy of f is then defined as the limit of $\text{Dir}_{\varepsilon}(f)$ when ε goes to 0.

If $f:\Omega \to \mathbb{R}$ is smooth,

$$\operatorname{Dir}(f) = \int_{\Omega} |\nabla f(\xi)|^2 \mathrm{d}\xi = \lim_{\varepsilon \to 0} \left(\frac{C_n}{2} \int_{\Omega} \frac{1}{\varepsilon^n} \int_{\Omega} \frac{|f(\xi) - f(\eta)|^2}{\varepsilon^2} \mathbb{1}_{|\xi - \eta| \leqslant \varepsilon} \, \mathrm{d}\eta \, \mathrm{d}\xi \right)$$

Definition (Korevaar and Schoen (1993), Jost (1994))

If (X, δ) is a separable metric space and $f : \Omega \to X$, then

$$\operatorname{Dir}_{\varepsilon}(f) = \frac{C_n}{2\varepsilon^{n+2}} \iint_{\Omega \times \Omega} \delta(f(\xi), f(\eta))^2 \mathbb{1}_{|\xi - \eta| \leqslant \varepsilon} \mathrm{d}\xi \mathrm{d}\eta.$$

The Dirichlet energy of f is then defined as the limit of $\text{Dir}_{\varepsilon}(f)$ when ε goes to 0.

Defined in arbitrary metric spaces but the analysis can be carried out only for spaces of **NonPositive Curvature**.

 $(\mathcal{P}(\textit{D}),\textit{W}_2)$ has a **positive** curvature.

If $\boldsymbol{\mu}:\Omega \to \mathcal{P}(D)$, one sets

$$\operatorname{Dir}_{\varepsilon}(\boldsymbol{\mu}) := \frac{C_n}{2\varepsilon^{n+2}} \iint_{\Omega \times \Omega} W_2^2(\boldsymbol{\mu}(\xi), \boldsymbol{\mu}(\eta)) \mathbb{1}_{|\xi - \eta| \leqslant \varepsilon} \mathrm{d}\xi \mathrm{d}\eta.$$

If $\boldsymbol{\mu}:\Omega \to \mathcal{P}(D)$, one sets

$$\operatorname{Dir}_{\varepsilon}(\boldsymbol{\mu}) := \frac{\zeta_n}{2\varepsilon^{n+2}} \iint_{\Omega \times \Omega} W_2^2(\boldsymbol{\mu}(\xi), \boldsymbol{\mu}(\eta)) \mathbb{1}_{|\xi - \eta| \leqslant \varepsilon} \mathrm{d}\xi \mathrm{d}\eta.$$

Theorem

One has

$$\lim_{\varepsilon \to 0} \operatorname{Dir}_{\varepsilon} = \operatorname{Dir},$$

and the convergence holds pointwisely and in the sense of Γ -convergence along the sequence $\varepsilon_m = 2^{-m}$.

The space $\{\mu : Dir(\mu) < +\infty\}$ coincides with $H^1(\Omega, \mathcal{P}(D))$ for the standard definitions of Sobolev spaces in metric spaces (RESHETNYAK, HAJŁASZ).

Curvature and convexity

If $\mu, \nu \in \mathcal{P}(D)$, two ways to interpolate.

Curvature and convexity

If $\mu, \nu \in \mathcal{P}(D)$, two ways to interpolate.

The displacement interpolation

- Midpoint of the geodesic in the Wasserstein space.
- The space (\$\mathcal{P}(D), W_2\$) is a
 positively curved space: no
 convexity of \$W_2\$ nor Dir.

Curvature and convexity

The displacement interpolation

- Midpoint of the geodesic in the Wasserstein space.
- The space (\$\mathcal{P}(D), W_2\$) is a
 positively curved space: no
 convexity of \$W_2\$ nor Dir.

The linear interpolation

- The Wasserstein distance square W_2^2 and the Dirichlet energy are convex.
- Tools from convex analysis.

2. The Dirichlet problem

The Dirichlet problem

We choose $\mu_b: \partial\Omega \to \mathcal{P}(D)$ the boundary data.

Definition

The Dirichlet problem is

$$\min_{\boldsymbol{\mu}} \left\{ \operatorname{Dir}(\boldsymbol{\mu}) : \boldsymbol{\mu} = \boldsymbol{\mu}_{b} \text{ on } \partial \Omega \right\}.$$

The solutions of the Dirichlet problem are called harmonic mappings (valued in the Wasserstein space).

The Dirichlet problem

We choose $\mu_{D}: \partial\Omega \rightarrow \mathcal{P}(D)$ the boundary data.

Definition

The Dirichlet problem is

$$\min_{\boldsymbol{\mu}} \left\{ \operatorname{Dir}(\boldsymbol{\mu}) : \boldsymbol{\mu} = \boldsymbol{\mu}_{b} \text{ on } \partial \Omega \right\}.$$

The solutions of the Dirichlet problem are called harmonic mappings (valued in the Wasserstein space).

Theorem

Assume $\mu_b : \partial\Omega \to (\mathcal{P}(D), W_2)$ is a Lipschitz mapping. Then there exists at least one solution to the Dirichlet problem.

Tool: extension theorem for Lipschitz mappings valued in $(\mathcal{P}(D), W_2)$. Uniqueness is an open question.

Numerics: example

•.	•. •.	•	•	00	00	00	0	2	2	0	۲	۲
•												۲
**												۲
**												-
**												4
**												4
**												*
P.												*
*A												*
*A												*
tx.												+
×												+
*												+
\star	* *	*	*	★	★	*	*	*	*	+	+	+

Numerics: example

•••••	•	0 0	00	00	00	2	2	۲	۲	۲
• • •	•	0 00	00	00	00	00	2	2	۲	۲
*. *. *.	**		00	00	00	00	20	2	2	۲
* * * * * e	**	a ªa	00	00	00	00	00	20	2	٩
* * * * * E	**	a 3a	0	20	00	00	20	20	20	4
* * * * *	***	a 4.	1	A.	de.	ϑ_{θ}	ϑ_{ll}	$\vartheta_{l\!\!p}$	ϕ_{lp}	4
** ** **	**	A 46	A.	A.	A.	A.	$\vartheta_{l^{\prime}}$	Ap.	$d_{\rm p}$	*
*R *R *R	**	A. 4.	A.	AR	$\vartheta_{\mathcal{C}}$	$\vartheta_{\mathcal{C}}$	$\mathcal{A}_{\mathcal{C}}$	de	$d_{\rm p}$	*
** ** **	AR A	A AR	AR	AR	$\varphi_{\mathcal{C}}$	${}^{A}\!\ell^{e}$	de	de	4	*
*x *x *x	**	the the	AR	AR	A.	A.	de.	4	*	+
*x *x *x	**	the the	A.	AR	1	1	*	*	*	٠
* * *	*	the the	1.	*	*	*	*	*	+	+
* * *	* 1	* *	*	*	*	*	*	*	+	+
$\star \star \star$	* 1	* *	★	*	*	*	*	+	+	+

Primal Problem

Unknowns ($\mathbf{m} = \mu \mathbf{v}$ momentum):

 $\boldsymbol{\mu}: \Omega \times D \to \mathbb{R}_+$ $\mathbf{m}: \Omega \times D \to \mathbb{R}^{nd}$

Primal Problem

Unknowns ($\mathbf{m} = \mu \mathbf{v}$ momentum):

$$\boldsymbol{\mu}:\Omega\times D\to \mathbb{R}_+$$

$$\mathbf{m}: \Omega \times D \to \mathbb{R}^{nc}$$

Objective

$$\min_{\boldsymbol{\mu},\mathbf{m}} \left\{ \iint_{\Omega \times D} \frac{|\mathbf{m}|^2}{2\boldsymbol{\mu}} \right\},\,$$

Primal Problem

Unknowns ($\mathbf{m} = \mathbf{\mu}\mathbf{v}$ momentum):

$$\boldsymbol{\mu}:\Omega\times D\to\mathbb{R}_+$$

$$\mathbf{m}: \Omega \times D \to \mathbb{R}^{nc}$$

Objective

$$\min_{\boldsymbol{\mu},\mathbf{m}} \left\{ \iint_{\Omega \times D} \frac{|\mathbf{m}|^2}{2\boldsymbol{\mu}} \right\},\,$$

under the constraints

$$\begin{cases} \nabla_{\Omega} \boldsymbol{\mu} + \nabla_{D} \cdot \mathbf{m} = 0, \\ \boldsymbol{\mu} = \boldsymbol{\mu}_{b} \text{ on } \partial\Omega \end{cases}$$

Primal Problem

Dual Problem

Unknowns (m $= \mu v$ momentum):

$$\boldsymbol{\mu}: \Omega \times \boldsymbol{D} \to \mathbb{R}_+$$

$$\mathbf{m}: \Omega imes D o \mathbb{R}^{nc}$$

Objective

$$\min_{\boldsymbol{\mu},\mathbf{m}} \left\{ \iint_{\Omega \times D} \frac{|\mathbf{m}|^2}{2\boldsymbol{\mu}} \right\},\,$$

under the constraints

$$\begin{cases} \nabla_{\Omega} \boldsymbol{\mu} + \nabla_{D} \cdot \mathbf{m} = 0, \\ \boldsymbol{\mu} = \boldsymbol{\mu}_{b} \text{ on } \partial\Omega \end{cases}$$

Unknown:

$$\varphi: \Omega \times D \to \mathbb{R}^n$$

Primal Problem

Unknowns ($\mathbf{m} = \mu \mathbf{v}$ momentum):

$$\boldsymbol{\mu}: \Omega \times \boldsymbol{D} \to \mathbb{R}_+$$

$$\mathbf{m}:\Omega imes D o\mathbb{R}^n$$

Objective

$$\min_{\boldsymbol{\mu},\mathbf{m}} \left\{ \iint_{\Omega \times D} \frac{|\mathbf{m}|^2}{2\boldsymbol{\mu}} \right\},\,$$

under the constraints

$$\begin{cases} \nabla_{\Omega} \boldsymbol{\mu} + \nabla_{D} \cdot \mathbf{m} = 0, \\ \boldsymbol{\mu} = \boldsymbol{\mu}_{b} \text{ on } \partial\Omega \end{cases}$$

Dual Problem

Unknown:

$$\boldsymbol{\varphi}: \Omega \times \boldsymbol{D} \to \mathbb{R}^n$$

Objective

$$\max_{\boldsymbol{\varphi}} \left\{ \int_{\partial\Omega} \int_{D} \boldsymbol{\varphi}(\xi, \cdot) \cdot \mathbf{n}_{\Omega}(\xi) \boldsymbol{\mu}_{b}(\xi) \mathrm{d}\xi \right\}$$

Primal Problem

Unknowns (m $= \mu v$ momentum):

$$\boldsymbol{\mu}:\Omega\times D\to\mathbb{R}_+$$

$$\mathbf{m}:\Omega imes D
ightarrow\mathbb{R}^{nc}$$

Objective

$$\min_{\boldsymbol{\mu},\mathbf{m}} \left\{ \iint_{\Omega \times D} \frac{|\mathbf{m}|^2}{2\boldsymbol{\mu}} \right\},\,$$

under the constraints

$$\begin{cases} \nabla_{\Omega} \boldsymbol{\mu} + \nabla_{D} \cdot \mathbf{m} = 0, \\ \boldsymbol{\mu} = \boldsymbol{\mu}_{b} \text{ on } \partial\Omega \end{cases}$$

Dual Problem

Unknown:

$$\boldsymbol{\varphi}: \Omega \times \boldsymbol{D} \to \mathbb{R}^n$$

Objective

$$\max_{\boldsymbol{\varphi}} \left\{ \int_{\partial\Omega} \int_{D} \boldsymbol{\varphi}(\boldsymbol{\xi}, \cdot) \cdot \mathbf{n}_{\Omega}(\boldsymbol{\xi}) \boldsymbol{\mu}_{\boldsymbol{b}}(\boldsymbol{\xi}) \mathrm{d}\boldsymbol{\xi} \right\},$$

under the constraint

$$abla_{\Omega} \cdot \boldsymbol{\varphi} + rac{1}{2} \left|
abla_{D} \boldsymbol{\varphi} \right|^{2} \leqslant 0.$$

14/20

Primal Problem

Unknowns ($\mathbf{m} = \boldsymbol{\mu} \mathbf{v}$ momentum):

$$\boldsymbol{\mu}:\Omega\times D\to\mathbb{R}_+$$

$$\mathbf{m}:\Omega imes D
ightarrow\mathbb{R}^{nc}$$

Objective

$$\min_{\boldsymbol{\mu},\mathbf{m}} \left\{ \iint_{\Omega \times D} \frac{|\mathbf{m}|^2}{2\boldsymbol{\mu}} \right\},\,$$

under the constraints

$$\begin{cases} \nabla_{\Omega} \boldsymbol{\mu} + \nabla_{D} \cdot \mathbf{m} = 0, \\ \boldsymbol{\mu} = \boldsymbol{\mu}_{b} \text{ on } \partial\Omega \end{cases}$$

In practice: finite-dimensional "approximation" then ADMM.

Dual Problem

Unknown:

$$\boldsymbol{\varphi}: \Omega \times \boldsymbol{D} \to \mathbb{R}^n$$

Objective

$$\max_{\boldsymbol{\varphi}} \left\{ \int_{\partial\Omega} \int_{D} \boldsymbol{\varphi}(\xi, \cdot) \cdot \mathbf{n}_{\Omega}(\xi) \boldsymbol{\mu}_{b}(\xi) \mathrm{d}\xi \right\},\$$

under the constraint

$$abla_{\Omega} \cdot \boldsymbol{\varphi} + rac{1}{2} \left|
abla_{D} \boldsymbol{\varphi} \right|^{2} \leqslant 0.$$

3. What can be said about these harmonic mappings?

On the Wasserstein space there exists $F : \mathcal{P}(D) \to \mathbb{R}$ convex along (generalized) geodesics. For instance:

On the Wasserstein space there exists $F : \mathcal{P}(D) \to \mathbb{R}$ convex along (generalized) geodesics. For instance:

• The potential energies, e.g.

$$\mu \mapsto \int_D |\mathbf{x}|^2 \,\mathrm{d}\mu(\mathbf{x}).$$

On the Wasserstein space there exists $F : \mathcal{P}(D) \to \mathbb{R}$ convex along (generalized) geodesics. For instance:

• The potential energies, e.g.

$$\mu \mapsto \int_D |x|^2 \,\mathrm{d}\mu(x).$$

• The interaction energies, e.g.

$$\mu \mapsto \iint_{D \times D} |x - y|^2 \,\mathrm{d} \mu(x) \,\mathrm{d} \mu(y).$$

On the Wasserstein space there exists $F : \mathcal{P}(D) \to \mathbb{R}$ convex along (generalized) geodesics. For instance:

• The potential energies, e.g.

$$\mu \mapsto \int_D |\mathbf{X}|^2 \,\mathrm{d}\mu(\mathbf{X}).$$

• The interaction energies, e.g.

$$\mu \mapsto \iint_{D \times D} |x - y|^2 \,\mathrm{d} \mu(x) \,\mathrm{d} \mu(y).$$

• The internal energies, e.g.

$$\mu \mapsto \begin{cases} \int_D \mu \ln \mu & \text{if } \mu \text{ has a density w.r.t. Lebesgue,} \\ +\infty & \text{else.} \end{cases}$$

Maximum principle

Theorem

Take $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ convex along generalized geodesics (and few additional regularity property) and a boundary condition $\mu_b : \partial\Omega \to \mathcal{P}(D)$ such that $\sup_{\partial\Omega} (F \circ \mu_b) < +\infty$.

Theorem

Take $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ convex along generalized geodesics (and few additional regularity property) and a boundary condition $\mu_b : \partial\Omega \to \mathcal{P}(D)$ such that $\sup_{\partial\Omega} (F \circ \mu_b) < +\infty$.

Then there exists at least one solution μ of the Dirichlet problem with boundary conditions μ_{b} such that

$$\Delta(F \circ \boldsymbol{\mu}) \ge 0 \qquad \text{and} \qquad \underset{\Omega}{\operatorname{ess\,sup}} (F \circ \boldsymbol{\mu}) \leqslant \underset{\partial\Omega}{\operatorname{sup}} (F \circ \boldsymbol{\mu}_b).$$

Theorem

Take $F : \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ convex along generalized geodesics (and few additional regularity property) and a boundary condition $\mu_b : \partial\Omega \to \mathcal{P}(D)$ such that $\sup_{\partial\Omega} (F \circ \mu_b) < +\infty$.

Then there exists at least one solution μ of the Dirichlet problem with boundary conditions μ_{b} such that

$$\Delta(\mathsf{F} \circ \boldsymbol{\mu}) \ge 0 \qquad \text{ and } \qquad \operatorname*{ess\,sup}_{\Omega}(\mathsf{F} \circ \boldsymbol{\mu}) \leqslant \underset{\partial \Omega}{\sup}(\mathsf{F} \circ \boldsymbol{\mu}_b).$$

Already known for harmonic mappings valued in Riemannian manifolds (ISHIHARA) and Non Positively Curved spaces (STURM).

First replace Dir by the approximate Dirichlet energies Dir_{ε} .

First replace Dir by the approximate Dirichlet energies $\operatorname{Dir}_{\varepsilon}$.

If μ_{ε} minimizes Dir_{ε} , then for a.e. $\xi \in \Omega$, the measure $\mu_{\varepsilon}(\xi)$ is a (Wasserstein) barycenter of the $\mu_{\varepsilon}(\eta)$ for $\eta \in B(\xi, \varepsilon)$.

First replace Dir by the approximate Dirichlet energies $\operatorname{Dir}_{\varepsilon}$.

If μ_{ε} minimizes Dir_{ε} , then for a.e. $\xi \in \Omega$, the measure $\mu_{\varepsilon}(\xi)$ is a (Wasserstein) barycenter of the $\mu_{\varepsilon}(\eta)$ for $\eta \in B(\xi, \varepsilon)$.

Jensen inequality for Wasserstein barycenters (Agueh, Carlier):

$$F(\boldsymbol{\mu}_{\varepsilon}(\xi)) \leqslant \int_{B(\xi,\varepsilon)} F(\boldsymbol{\mu}_{\varepsilon}(\eta)) \mathrm{d}\eta.$$

First replace Dir by the approximate Dirichlet energies $\operatorname{Dir}_{\varepsilon}$.

If μ_{ε} minimizes Dir_{ε} , then for a.e. $\xi \in \Omega$, the measure $\mu_{\varepsilon}(\xi)$ is a (Wasserstein) barycenter of the $\mu_{\varepsilon}(\eta)$ for $\eta \in B(\xi, \varepsilon)$.

Jensen inequality for Wasserstein barycenters (Agueh, Carlier):

$$F(\boldsymbol{\mu}_{\varepsilon}(\xi)) \leqslant \int_{B(\xi,\varepsilon)} F(\boldsymbol{\mu}_{\varepsilon}(\eta)) \mathrm{d}\eta.$$

Then limit $\varepsilon \to 0$ to get subharmonicity.

Case of delta functions

Assume $\mu_b(\xi) = \delta_{f_b(\xi)}$.

Case of delta functions

Assume $\mu_b(\xi) = \delta_{f_b(\xi)}$. Then $\mu(\xi) = \delta_{f(\xi)}$ where f is the (usual) harmonic extension of f_b .

Indeed the variance satisfies a maximum principle.

Family of "elliptically contoured distributions" $\mathcal{P}_{ec}(D)$, think Gaussians measures.

Family of "elliptically contoured distributions" $\mathcal{P}_{ec}(D)$, think Gaussians measures.

Family of "elliptically contoured distributions" $\mathcal{P}_{ec}(D)$, think Gaussians measures.

Theorem

Let $\mu_b : \partial\Omega \to \mathcal{P}_{ec}(D)$ Lipschitz such that $\mu_b(\xi)$ is not singular for every $\xi \in \partial\Omega$.

Family of "elliptically contoured distributions" $\mathcal{P}_{ec}(D)$, think Gaussians measures.

Theorem

Let $\mu_b : \partial\Omega \to \mathcal{P}_{ec}(D)$ Lipschitz such that $\mu_b(\xi)$ is not singular for every $\xi \in \partial\Omega$.

Then there exists a **unique** solution to the Dirichlet problem, it is valued in $\mathcal{P}_{ec}(D)$ and it is **smooth**.

Thank you for your attention

•••••	•	•	00	00	00	%	2	0	0	۲	۲
•••••	•			00	00	00	2	2	2	۲	۲
********	*		00	00	00	00	00	2	2	%	۲
*******	**	**	00	00	00	00	00	20	20	2	1
* _R * _R * _R	**	**	20	0	20	00	20	20	20	20	4
* _R * _R * _R	**	**	**	40	$\Phi_{I\!\!I}$	20	$\vartheta_{\mathcal{C}}$	20	20	20	4
** ** **	A.	**	1	1	$\Phi_{\mathcal{R}}$	$\Phi_{\mathcal{C}}$	A.	10	20	de	*
	_	_	_	_	_	_	_	_	_	_	
ϕ_R ϕ_R ϕ_R	A.	ϕ_{R}	A.	$\phi_{\ell\ell}$	A.	A.	$\vartheta_{\mathcal{C}}$	de	de	de	*
$\begin{array}{c} \phi_{\mathcal{R}} \\ \phi_{\mathcal$	the the	AR AR	AR AR	AR AR	AR AR	DE DE	40	28 28	2g 2g	*	*
** ** ** ** ** ** **	the the the	the the the	4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10	\$R \$R \$R	411 411 411	411 411 411	40 40 40	40 40 40	41 41 41	* *	*
** ** ** ** ** ** **	*** *** ***	<i>₱ℝ</i> <i>₱ℝ</i> <i>₱ℝ</i>	Ф.К. Ф.К. Ф.К.	4R 4R 4R 4R	4a 4a 4a 4a	4 ₁₁ 4 ₁₁ 4 ₁₁	411 411 411 411	48 48 48	41 41 41 41	*	* * *
* * * * * * * * * * * * * *	** ** **	*** *** ***	111 111 1111 1111 1111 1111 1111 1111 1111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111 111 111 111 1111 1111 1111 1111 1111	111 111 1111 1111 1111 1111 1111 1111 1111	111 111 111 111 111	10 10 10 10 10	*	* * *	* * *
** ** ** ** ** ** ** ** ** ** ** ** ** *	** ** **	** ** **	** ** ** **	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*** **	*** **	**	* * * *	* * * *	* * * *	* * * + +