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Measure-valued mappings

Q bounded set of R" with Lipschitz boundary, D bounded convex set of RY.

P(D) set of probability measures on D, “Wasserstein space”.

We study p : Q — P(D).
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Measure-valued mappings

Q bounded set of R" with Lipschitz boundary, D bounded convex set of RY.
P(D) set of probability measures on D, “Wasserstein space”.

We study p: Q@ — P(D

@.

Definition of Dir(u / |Vulfy, the Dirichlet energy w.rt. quadratic
Wasserstein distance.

Minimizers of Dir are called harmonic mappings (valued in the Wasserstein
space).

3/20

Iff: Q— Dand u() := b then Dir(u) = % , |Vf2.



Surface mapping (soromon er. aL.)

M and N are surfaces embedded in R3.

We want a map f : M — A with the least stretching.

™ 4
L o

4/20



Surface mapping (soromon er. aL.)

M and N are surfaces embedded in R3.
We want a map f : M — A with the least stretching.

The constraint of being single valued is relaxed by taking p : M — P(N).
The problem becomes convex.

1 . n
Dir(p) = /M 5\V,u|2 is @ measure of the stretching of p.
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In this presentation

1. The Wasserstein space and the Dirichlet energy
2. The Dirichlet problem

3. What can be said about these harmonic mappings?
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1. The Wasserstein space and the
Dirichlet energy



The metric tensor in the Wasserstein space

D c RY bounded convex, P(D) is the “Wasserstein space”.
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The metric tensor in the Wasserstein space

D c RY bounded convex, P(D) is the “Wasserstein space”.

Vertical derivative A Horizontal derivative
[-0n =9 ()] / g \

A particle located at x moves to x 4+ hv(x)

Ht4+h — Mt
h

+ Quadratic Optimal Transport: the square of the norm of the speed is

win, { [ WGP @) 5 V- () = -0 .

v:D—RI
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Curves valued in the Wasserstein space

If pu: [0,1] — P(D) is given, its Dirichlet energy (or action) is

1
Dir(g) := min {;/ / V> dpdt : O+ V- (uv) = 0} .
v o Jb
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v o Jo
The Wasserstein distance W5 is
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Curves valued in the Wasserstein space

If pu: [0,1] — P(D) is given, its Dirichlet energy (or action) is
: 1t 2
Dir(p) := min 5 [v|*dpdt : O+ V- (uv)=0,.
v o Jo
The Wasserstein distance W5 is

1 : )
SWA(p,v) = min {Dix() 5 po = p, 1 = v},

A e @ [
V| @ © @

and the minimizers are the constant-speed geodesics.
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The Dirichlet energy

Definition (Brenier (2003))
If u: Q — P(D) is given,

1
Dir(p) := min {2/ / [v[*dp © Vap+ Vp - (pv) = O} ,
v QJD
where v : Q x D — R,

If @ = [0,1] it coincides with the previous definition.
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A definition in arbitrary metric space

If f: Q — R is smooth,

Dir(f) = / IVA(E)2de =
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A definition in arbitrary metric space

If f: Q — R is smooth,
Ch
Dir(f) = /|Vf )|2d¢ = h (/ gn/u]ﬂg nl<e d77d5>

Definition (Korevaar and scroen (1993), Jost (1994))
If (X,0) is a separable metric space and f: Q — X, then

Dir.() = gty |8 )iyt

The Dirichlet energy of fis then defined as the limit of Dir.(f) when ¢ goes
to 0.
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A definition in arbitrary metric space

If f: Q — R is smooth,

pir() = | v Pae = tim (5 /. S [ Jut, . anag

Definition (Korevaar and scroen (1993), Jost (1994))
If (X,0) is a separable metric space and f: Q — X, then

Dir.() = gty |8 )iyt

The Dirichlet energy of fis then defined as the limit of Dir.(f) when ¢ goes
to 0.

Defined in arbitrary metric spaces but the analysis can be carried out only
for spaces of NonPositive Curvature.

(P(D), Ws) has a positive curvature.
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Equivalence of the definitions

If o : Q — P(D), one sets

. C
Dir. (1) = 5y [ W(u(E), ) e <cdn.
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Equivalence of the definitions

If o : Q — P(D), one sets

. C
Dir. (1) = 5y [ W(u(E), ) e <cdn.

Theorem
One has

lim Dir. = Dir,
e—0

and the convergence holds pointwisely and in the sense of I'-convergence
along the sequence e, = 2=™.

The space {u : Dir(u) < +oo} coincides with H'(Q, P(D)) for the standard
definitions of Sobolev spaces in metric spaces (ResHETNYAK, HAJtASZ).
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Curvature and convexity

If u,v € P(D), two ways to interpolate.
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The displacement interpolation
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+ Midpoint of the geodesic in the
Wasserstein space.

« The space (P(D),W,) is a
positively curved space: no
convexity of W2 nor Dir.
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Curvature and convexity

If u,v € P(D), two ways to interpolate.

v

The displacement interpolation The linear interpolation
+ Midpoint of the geodesic in the + The Wasserstein distance square
Wasserstein space. W3 and the Dirichlet energy are
« The space (P(D), W,) is a SelUdtes
positively curved space: no « Tools from convex analysis.

convexity of W2 nor Dir.
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2. The Dirichlet problem




The Dirichlet problem

We choose uy, : 92 — P(D) the boundary data.
Definition
The Dirichlet problem is

min {Dir(p) : p = pp on 90} .
n

The solutions of the Dirichlet problem are called harmonic mappings
(valued in the Wasserstein space).
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The Dirichlet problem

We choose uy, : 92 — P(D) the boundary data.

Definition
The Dirichlet problem is

min {Dir(p) : p = pp on 90} .
n

The solutions of the Dirichlet problem are called harmonic mappings
(valued in the Wasserstein space).

Theorem
Assume pp, : 9Q — (P(D), W) is a Lipschitz mapping. Then there exists at

least one solution to the Dirichlet problem.
Tool: extension theorem for Lipschitz mappings valued in (P(D), Ws). O

Uniqueness is an open question.
12/20



=
(=
8
xX
)]
7]
4]
‘=
]
£
S
=

(] e][e][e][e][e][+]+][+][+][+][+]+]+]
3
0 O I B3
S0 O I 3
Cl N 3
S N 3
S0 O I B3
S0 O A Y
ISl N 3
52 O N B
S0 O N B
50 O A 5
Il N 5
Il 3 [ R 1R 1B3 B B

13/20



=
o
£
T
x
o
7
o

‘=
]
£
S
=

(] e][e][e][e][e][+]+][+][+][+][+]+]+]
(o] s][e][s][s][e]+]+][+][+][+]+]+]+]
[S]e][s][s][s][][+]+][+][+][+]+]+]+]

49
E@@HHEEHIHHI
[*][F][+][+]

(] +]
[ ¥]

[]¥]
[ (][] [¥]
EJE(ES(ES
[l

@E@@@@IIH
[ [ ][] [a*]o¥] [ [¥][]
[ [ ][¥] 0¥ (o] [ [ ][]
[« [ ][¥]o¥] (o] o] [+¥][]
5 S S 5 [ | T

13/20



Numerics: convex optimization a la BENAMOU and BRENIER

14/20



Numerics: convex optimization a la BENAMOU and BRENIER

Primal Problem

Unknowns (m = pv momentum):
Mo QxD— ]R+

m:QxD— R™M

14/20



Numerics: convex optimization a la BENAMOU and BRENIER

Primal Problem

Unknowns (m = pv momentum):
Mo QxD— ]R+

m:QxD— R™M

Objective

a5
min —_— 5,
wm (Jloxp 21

14/20



Numerics: convex optimization a la BENAMOU and BRENIER

Primal Problem
Unknowns (m = pv momentum):
Mo QxD— ]R+

m:QxD— R™M

Objective

Lo 5}

under the constraints

Vap+Vp-m =0,
pn = pp on of)

14/20



Numerics: convex optimization a la BENAMOU and BRENIER

Primal Problem Dual Problem
Unknowns (m = pv momentum): Unknown:
pn:QxD— Ry 0: Q2 xD—R"

m:QxD— R™M

Objective

Lo 5}

under the constraints

Vap+Vp-m =0,
pn = pp on of)

14/20



Numerics: convex optimization a la BENAMOU and BRENIER

Primal Problem

Unknowns (m = pv momentum):

HIQXD-)]R+

m:QxD— R™M

Objective

Lo 5}

under the constraints

Vap+Vp-m =0,
pn = pp on of)

Dual Problem
Unknown:

0: Q2 xD—R"

Objective

max { /d vt rm(f)ub(f)dg} .,

14/20



Numerics: convex optimization a la BENAMOU and BRENIER

Primal Problem

Unknowns (m = pv momentum):

HIQXD-)]R+

m:QxD— R™M

Objective

Lo 5}

under the constraints

Vap+Vp-m =0,
pn = pp on of)

Dual Problem
Unknown:

0: Q2 xD—R"

Objective

max { /d vt rm(f)ub(f)dg} .,

under the constraint

Va-o+ |VDH

14/20



Numerics: convex optimization a la BENAMOU and BRENIER

Primal Problem Dual Problem
Unknowns (m = pv momentum): Unknown:
pn:QxD— Ry 0: Q2 xD—R"
m:QxD— R Objective
Objective
max{ [ [ ot ma(@me(€)ac].
¥ o JD

{// m2}
rnln, — s,
axp 21 under the constraint

under the constraints
Va- v+ |VDH

Vap+Vp-m =0,
pn = pp on of)

In practice: finite-dimensional “approximation” then ADMM.
14/20



3. What can be said about these
harmonic mappings?




Geodesically convex functionals

On the Wasserstein space there exists F : P(D) — R convex along
(generalized) geodesics. For instance:
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Geodesically convex functionals

On the Wasserstein space there exists F : P(D) — R convex along
(generalized) geodesics. For instance:

« The potential energies, e.g.

i [ W duo.

 The interaction energies, e.g.

i [ b=y ant) dugy).

+ The internal energies, e.g.

//L Inp if p has a density w.rt. Lebesgue,
p— < Jo

400 else.

15/20
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Theorem

Take F : P(D) — R U {+oc0} convex along generalized geodesics (and few
additional regularity property) and a boundary condition p, : 92 — P(D)
such that sup(F o pup) < +oo.

o0
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boundary conditions p, such that
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Theorem

Take F : P(D) — R U {+oc0} convex along generalized geodesics (and few
additional regularity property) and a boundary condition p, : 92 — P(D)
such that sup(F o pup) < +oo.

o0

Then there exists at least one solution p of the Dirichlet problem with
boundary conditions p, such that

A(Fou) >0 and esssup(Fo p) < sup(Fo up).
Q a0

Already known for harmonic mappings valued in Riemannian manifolds
(1sHinaRA) and Non Positively Curved spaces (Sturm).

16/20



Idea of the proof

First replace Dir by the approximate Dirichlet energies Dir..
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Idea of the proof

First replace Dir by the approximate Dirichlet energies Dir..

If . minimizes Dir,, then for a.e. ¢ € ), the measure p. (&) is a (Wasserstein)
barycenter of the u.(n) for n € B(, ¢).

Jensen inequality for Wasserstein barycenters (AGueH, CARLIER):

Fpe(6)) < 715(5 Flaemdn

Then limit ¢ — 0 to get subharmonicity. O

17/20



Case of delta functions

Assume pp (&) = d5, (¢)-
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Case of delta functions

Assume g, (€) = 05, (¢). Then (&) = by where fis the (usual) harmonic
extension of f.

Indeed the variance satisfies a maximum principle.
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Case of Gaussian measures

Family of “elliptically contoured distributions” P..(D), think Gaussians
measures.
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Case of Gaussian measures

Family of “elliptically contoured distributions” P,.(D), think Gaussians
measures.

Theorem

Let pp : 9Q — Pec(D) Lipschitz such that uy(€) is not singular for every
& € 0N
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Case of Gaussian measures

Family of “elliptically contoured distributions” P,.(D), think Gaussians
measures.

Theorem

Let pp : 9Q — Pec(D) Lipschitz such that uy(€) is not singular for every
& € 0N

Then there exists a unique solution to the Dirichlet problem, it is valued in
Pec(D) and it is smooth.
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Thank you for your attention
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