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1. A non convex problem



A variational problem inspired from elasticity theory

D c RY, © c R* bounded domain with unit volume and smooth boundary.
Lp and L Lebesgue measures restricted to D and 2 respectively.

min {E(u) = /D (;VU(X)F —f(x) - u(x)) dx : u=gondDand u#Lp = EQ}

u:D—Q

« f: D — R exterior force.
* g: 0D — 00 prescribed deformation on the boundary.

c U#Lp= Lo & VBCQ, Lp(u=!(B)) = La(B).
If d = Rk and u smooth and one-to-one, it's equivalent to

| det Vu| = 1.
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A variational problem inspired from elasticity theory

D c RY, © c R* bounded domain with unit volume and smooth boundary.
Lp and L Lebesgue measures restricted to D and 2 respectively.

min {E(u) = /D (;VU(X)F —f(x) - u(x)) dx : u=gondDand u#Lp = EQ}

u:D—Q

« f: D — R exterior force.
* g: 0D — 00 prescribed deformation on the boundary.

s U#HLp = Lo & VB CQ, ,CD(Ufl(B)) = LSZ(B).
If d = Rk and u smooth and one-to-one, it's equivalent to
| det Vu| = 1.

Critical points satisfy Au + f = (Vw) o u in the interior of D, where w : @ — R

is a Lagrange multiplier.
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Without the incompressibilty constraint

u:D—Rk

min {/D <;|Vu()<)|2 —fx) - u(x)> dx : u=gonaDand }

It's a convex problem.

Theorem

Under mild regularity assumptions on f, g and D, there exists a unique
global minimizer u and it satisfies

Au+f=0 inD,
u=g on dD.
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Without Dirichlet energy and D = ) convex

UIBLDD {/D ( —f(x) - u(x)) dx : and u#Lp = ED}

Theorem (polar factorization)’

We assume f € L2(D,R¥) and (f#Lp)(B) = 0 if HI~1(B) = 0. Then f can be
uniquely written

f=(Vw)ou
where w : D — R convex and u : D — D satisfies u#Lp = Lp. The function u
is the unique minimizer of the energy under the constraint u#Lp = Lp.

The mapping Vw is the optimal transport map of £, onto f#L) for the
quadratic cost.

"Brenier (1987). Décomposition polaire et réarrangement monotone des champs de vecteurs.
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Goal of this talk

An existence theory exists for instance in the framework of polyconvex
functionals. 2.

2Ball (1976). Convexity conditions and existence theorems in nonlinear elasticity. ale



Goal of this talk

An existence theory exists for instance in the framework of polyconvex
functionals. 2.

Today: propose a convex relaxation of the problem with Dirichlet energy and
incompressibility constraint.

Previous attempts:

+ ). Louet (2014). Optimal transport problems with gradient penalization.

+ R. Awi and W. Gangbo (2014). A polyconvex integrand; Euler-Lagrange
equations and uniqueness of equilibrium.

+ T. Mollenhoff and D. Cremers (2019). Lifting vectorial variational
problems: a natural formulation based on geometric measure theory
and discrete exterior calculus.

Very recent paper on uniqueness and regularity:

+ W. Gangbo, M. Jacobs and I. Kim (2020). Well-posedness and regularity

for a polyconvex energy.
2Ball (1976). Convexity conditions and existence theorems in nonlinear elasticity.
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An example: pure torsion of a cylinder

D=Q=B(0,1) x [0,1]. Fora > 0,

where Ry : R? — R? rotation by an
angle 6.
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An example: pure torsion of a cylinder

D= =B(0,1) x [0,1]. Fora > 0,

where R, : R? — R? rotation by an
angle 6.

Result (f = 0)

For all a > 0, the function u, is a critical point of the energy.

We will see that, at least for small g, it is a global minimizer with boundary
condition g = Uq|gp.
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2. A convex relaxation



u()
Q |
3
D
l Relaxation
Q T 7T(£L'7 )
.
D

Method

u: D — Q satisfying u#Lp = Lq is replaced by
7w € P(D x Q) whose marginals are £, and Lg,.
We write 7 € II(Lp, Lq).

« The marginal constraints are linear. For
instance, for all a € C(D):

Jruo®®

m(dx,dy) = /D a(x) dx
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D

Method

u: D — Q satisfying u#Lp = Lq is replaced by
7w € P(D x Q) whose marginals are £, and Lg,.
We write 7 € II(Lp, Lq).

« The marginal constraints are linear. For
instance, for all a € C(D):

Jruo®®

« By disintegration/fubinization, one can see
7w € II(Lp, Lo) as a mapping
m:XeD—=7(x,-) € P(Q).

« Ifu:D— Q, we can define 7, by
(X, ) =

m(dx,dy) = /D a(x) dx

y=u(x)* 8/22



Back to the problem

min_ {/D (;|Vu(x)|2f(x) : u(x)) dx : u=gondDand u#Ly = 59}
!

min {” // -y) m(dx,dy) : ??and 7 € H(ﬁo,ﬁsz)}
DxQ

TEP(DXRQ)

Without Dirichlet energy, it's exactly the relaxation used by Yann Brenier in
1987 to prove polar factorization!
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Back to the problem

min_ {/D (;|Vu(x)|2f(x) : u(x)) dx : u=gondDand u#Ly = 59}
!

min {” // -y) w(dx,dy) : ??and 7 € II(Lp, Esz)}
DX

TEP(DXRQ)

Without Dirichlet energy, it's exactly the relaxation used by Yann Brenier in
1987 to prove polar factorization!

Question
How to define a Dirichlet energy for = : D — P(Q)?

9/22



Dirichlet energy for measure-valued mappings3 *

. d . . .
J: D x Q — R matrix-valued measure d—J “density of Jacobian matrix”.
™
Constraint between 7 and J:
VX’]T(va) + vy j(va) = 07
and the Dirichlet energy is

// ”2:// 114
pxQ 27 pxq 2 |dm

2
dr

3Brenier (2003). Extended Monge-Kantorovich theory.

4Lavenant (2019). Harmonic mappings valued in the Wasserstein space. /
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Dirichlet energy for measure-valued mappings3 *

. d . . .
J: D x Q — R matrix-valued measure d—J “density of Jacobian matrix”.
™
Constraint between 7 and J:
VX’]T(va) + vy j(va) = 07
and the Dirichlet energy is

[os=1..s
pxQ 27 DxQ 2

If 7(dx, dy) = my(dx,dy) = dy—y(xdx, we choose

- (x,¥) =Vu(x) sothat // Vul? :/1|Vu(x)|2dx.
Sy DxQ 2Ty p 2

This definition has a link with a Dirichlet energy “a la Korevaar and Schoen”
for mappings valued in metric spaces.

3Brenier (2003). Extended Monge-Kantorovich theory.
4Lavenant (2019). Harmonic mappings valued in the Wasserstein space.

dj |
=l a
dm T
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Back to the problem with incompressibility: the relaxation

Relaxed (primal) problem
We say that 7 € P(D x Q) and ) € M(D x Q,R9*K) are admissible if

™ S H(ED,EQ)
Vxﬂ"f'Vy'j = O inDXQ
(X, ") = dy—qr forxeaD

and we define
1
E (n,) :// -
r( ) Dx$2 2 <

Minimizing E, among the admissible (r, ) is a convex problem!

2
D )~ -y) (%, )
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Back to the problem with incompressibility: the relaxation

Relaxed (primal) problem
We say that 7 € P(D x Q) and ) € M(D x Q,R9*K) are admissible if

™ S H(ED,EQ)
Vxﬂ"f'Vy'j = O inDXQ
(X, ") = dy—qr forxeaD

and we define
1
E (n,) :// -
r( ) Dx$2 2 <

Minimizing E, among the admissible (r, ) is a convex problem!

2
D )~ -y) (%, )

If u#Lp = Lo and u = g on 9D then (m,,J,) admissible and
E(u) = Er(ﬂufju)-

12/22



The dual problem

Three Lagrange multipliers: v, w for the marginal constraints, ¢ for
Vym + Vy -J = 0 and the boundary condition.

The dual problem

We say that (p, ), w), where ¢ € C1(D x Q,R%), ¢ € C(D) and w € C(Q), is
admissible if for all (x,y) € D x Q,

900 +00) ~ 10y > (Ve o+ 21l ) ()
Then we define

£ (g ) = |

oD

w%ﬁW%M@M—AM@M—AMWW
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Link between the primal and the dual

Proposition (weak duality)
If (7,/) admissible in the primal and (¢, 1, w) admissible in the dual,

E?(SO’ 1, W) < Er(m])-

1422



Link between the primal and the dual

Proposition (weak duality)
If (7,/) admissible in the primal and (¢, 1, w) admissible in the dual,

E?(SO’ 1, W) < Er(m])-

Moreover, equality holds if and only if

dJ
V)/()O(Xv y) = a(xa y) for = — a.e. X,y

1
Y(X) +w(y) —f(X) -y =Vx- o+ §\Vygo\2 for r — a.e. X, y.
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Link between the primal and the dual

Proposition (weak duality)
If (7,/) admissible in the primal and (¢, 1, w) admissible in the dual,

E?(SO’ 1, W) < Er(m])-

Moreover, equality holds if and only if

dJ
V)/()O(Xv y) = a(xa y) for = — a.e. X,y

1
Y(X) +w(y) —f(X) -y =Vx- o+ §\Vygo\2 for r — a.e. X, y.

Strong duality: not proven, but should be doable with Fenchel Rockaffellar
theorem.

Existence of an optimal dual solution is an open problem (already in the
case without incompressibility).
14/22



A more general case

Now W : R?** — R convex density of elastic energy and
@ : P(Q) —» RU {400} convex function of measures.

u:D—

min {/D (W(Vu(x)) = f(x) - u(x)) dx+ @(u#Lp) : u=gon 8D} .
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A more general case

Now W : R?** — R convex density of elastic energy and
@ : P(Q) —» RU {400} convex function of measures.

min {/D (W(Vu(x)) = f(x) - u(x)) dx+ ®(u#Lp) : u=gon 8D} .

u:D—

. 1
Previous case W(C) = 5|C|2 and ®(u) =

0 If Hn = ,CQ
+o00 otherwise
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A more general case

Now W : R?** — R convex density of elastic energy and
@ : P(Q) —» RU {400} convex function of measures.

min {/D (W(Vu(x)) = f(x) - u(x)) dx+ @(u#Lp) : u=gon 8D} .

u:D—

0 ifuiﬁgz

n 1
Previous case W(C) = 5|C|2 and &(p) = { eru
+o0o otherwise

Compressible case: take h : [0, +00) — R U {+oco} convex, then
/ h(det Vu(x))dx = ®(u#Lp),
D
for some ® convex on the set of measures.

15/22



Relaxation in the general case

1 = U#Lp becomes a variable to optimize.

Primal
Dual

(p,1,w) admissible if

(m,J, 1) admissible if

e H(‘CDMU)
Vir +Vy,-/=0inD x Q Y(X) +w(y) = f(x) -y
>V, - * .
(X, ) = dy—g(x) ON OD 2 Vy- o+ W (Vyp)
and and
Er(m, ), ) = Ef (0,9, w) =

// ( ) fy)w+<1>() /aDw(g%an/Dq/;Ab*(w)

Complementary slackness impose w € 9®(u) at optimality. 16/22



3. Tightness of the relaxation and
consequences




Combining the embedding u — (m,, /)y, U#Lp) and weak duality,

min Eu) >  min_ E(rp) > sup  Epew).
u:D—Q (m,J,p) admissible (¢,1,w) admissible
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Combining the embedding u — (m,, /)y, U#Lp) and weak duality,

min E(u) > min  E(m, ), pu) = sup E (o, ¢, w).
u:D—Q (m,J,p) admissible (¢,1,w) admissible

Important remark
If for u : D — Q we can find (¢, ¢, w) admissible such that

EF (0,4, w) = E(u)

then u is a global minimizer of the energy E and (m,, Jy, U#Lp) minimizes
the relaxed energy.

In this case, the relaxation doesn'’t give better competitors.

17/22



Convexity of the pressure

Theorem

Let u : D — Q a smooth function satisfying u = g on 9D and w € d®(U#Lp)
such that

V- (DW(Vu)) +f= (Vw) o u.

If w can be extended on R* in a (strictly) convex function then u is a (the

unique) global minimizer global of the energy and (,, J,, U#Lp) minimizes
the relaxed energy.

O®(u) is the subdifferential of the functional @ at the point u. If @ is the
incompressibility constraint, 9®(Lg) = C(2), and 9P (Lg) = 0 for p # Lq.
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Convexity of the pressure

Theorem

Let u : D — Q a smooth function satisfying u = g on 9D and w € d®(U#Lp)
such that

V- (DW(Vu)) +f= (Vw) o u.

If w can be extended on R* in a (strictly) convex function then u is a (the

unique) global minimizer global of the energy and (,, J,, U#Lp) minimizes
the relaxed energy.

O®(u) is the subdifferential of the functional @ at the point u. If @ is the
incompressibility constraint, 9®(Lg) = C(2), and 9P (Lg) = 0 for p # Lq.

Idea of the proof. Same competitor then Brenier (in the case ® = 0) with
o(x,y) = y'Vu(x), and w given by the optimality conditions of u.

18/22



Optimal assumption?

Torsion of the cylinder : 27/q verti-
cal period.

If W Dirichlet energy, the pressure
is

a? 5 9
Wa y :77()( +y )7

2
V4

it is (—a?)-convex.
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Optimal assumption?

Torsion of the cylinder : 27/q verti-

cal period.

If W Dirichlet energy, the pressure

IS

a
wa Y] = ‘*‘Ei’(
V4

it is (—a?)-convex.

2 2)
)

& Ay

In general, in the case f = 0, the linearization of the problem yields Stokes

equations:

Au
V-u

=10

and p ~ w satisfies Ap = 0, it is not convex generically.

19/22



We restrict to the case Dirichlet case W(C) = 1/2|C|2. Let A\;(D) > 0 be the first
eigenvalue of the Dirichlet Laplacian on D.

Theorem

Let u : D — Q a smooth function satisfying u = g on 9D and w € AP (U#Lp)
such that

Au+f=(Vw)ou.
If w can be extended on R¥ in a \-convex function with A\ > —\,(D) then u

is the unique global minimizer global of the energy and (my, )y, U#Lp)
minimizes the relaxed energy.

In the pure torsion of the cylinder, global optimality in the case a small. For
large a, there holds min £, < min E.
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We restrict to the case Dirichlet case W(C) = 1/2|C|2. Let A\;(D) > 0 be the first
eigenvalue of the Dirichlet Laplacian on D.

Theorem

Let u : D — Q a smooth function satisfying u = g on 9D and w € AP (U#Lp)
such that

Au+f=(Vw) o u.

If w can be extended on R¥ in a \-convex function with A\ > —\,(D) then u

is the unique global minimizer global of the energy and (my, )y, U#Lp)
minimizes the relaxed energy.

In the pure torsion of the cylinder, global optimality in the case a small. For
large a, there holds min £, < min E.

Idea of the proof. There was still some leeway in Brenier's competitor.

20/22



A simpler proof of global optimality

It is enough to replace ® by its linear approximation in the space of
measures:

E(u) = /D (W(VU) — f- u) + B(U#Lo)
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A simpler proof of global optimality

It is enough to replace ® by its linear approximation in the space of
measures:

E(u) = /D (W(VU) — - u) + B(uLo)
> /D(VV(VU)—f-u)+/mwd(u#/3g)—<b*(w)

~—~
= if wedD (U Lo)

:/(W(Vu)fﬁu)Jr /woufi)*(w) = E,(u) — ©*(w).
D o

D
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A simpler proof of global optimality

It is enough to replace ® by its linear approximation in the space of
measures:

E(u) = /D (W(VU) — - u) + B(uLo)
> /D(VV(VU)—f-u)+/mwd(u#/3g)—<b*(w)

~—~
= if wedD (U Lo)

:/(W(Vu)fﬁu)Jr /woufi)*(w) = E,(u) — ©*(w).
D o

D

If u is a global minimizer of E,, for w € d®(u#Lp) then it is a global
minimizer of E. The energy E,, is convex under convexity assumption on w.
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A simpler proof of global optimality

It is enough to replace ® by its linear approximation in the space of
measures:

E(u) = /D (W(VU) — - u) + B(uLo)
> /D(W(Vu)—f-u)+/mwd(u#ljg)—<b*(w)

~—~
= if wedD (U Lo)

:/(W(Vu)fﬁu)Jr /woufq)*(w) = E,(u) — ©*(w).
D o

D
If u is a global minimizer of E,, for w € d®(u#Lp) then it is a global
minimizer of E. The energy E,, is convex under convexity assumption on w.

The improvement from w convex to w A\-convex works if W is uniformly
convex.

21/22



Results :

« Convex relaxation of a non-convex problem.

« The relaxation is tight under regularity and smallness assumption on
the solution.
 But the consequences can be obtained by simpler proofs.
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Results :

« Convex relaxation of a non-convex problem.

« The relaxation is tight under regularity and smallness assumption on
the solution.
 But the consequences can be obtained by simpler proofs.

Perspectives :

» Numerical simulations.
 Regularity of w thanks to “regularity by duality” techniques.
+ Convexification of other problems in calculus of variations.
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Results :

« Convex relaxation of a non-convex problem.

« The relaxation is tight under regularity and smallness assumption on
the solution.
 But the consequences can be obtained by simpler proofs.

Perspectives :

» Numerical simulations.
 Regularity of w thanks to “regularity by duality” techniques.
+ Convexification of other problems in calculus of variations.

Thank you for your attention

22/22



Link with a metric definition a la Korevaar and Schoen®

Take a convex Q. Quadratic Wasserstein distance on P(9) :

W)= _min { f[-2Pa@an 2 emun}.

YEP(2%xQ)

Theorem
Let 7 € P(D x Q) whose first marginal is £p. Then

: I e
mjln{//ngzﬂ_ : Vi +Vy, -/ =0

/ W2<7T(X7')77T(X/"))
DxD 2

cd+2

= lim Cy IL|X7X’\§5 dxdx’

e—0

where C4 constant depending only on d.

SKorevaar and Schoen (1993). Sobolev spaces and harmonic maps for metric space targets.
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