Hidden convexity in a problem of nonlinear elasticity

Hugo Lavenant ${ }^{a}$ - with Nassif Ghoussoub, Young-Heon Kim and Aaron Zeff Palmer November 112020

Seminar "Analysis and/of PDE", Durham, UK

1. A non convex problem
2. A convex relaxation
3. Tightness of the relaxation and consequences

1. A non convex problem

A variational problem inspired from elasticity theory

$D \subset \mathbb{R}^{d}, \Omega \subset \mathbb{R}^{k}$ bounded domain with unit volume and smooth boundary. \mathcal{L}_{D} and \mathcal{L}_{Ω} Lebesgue measures restricted to D and Ω respectively.
$\min _{u: D \rightarrow \Omega}\left\{E(u):=\int_{D}\left(\frac{1}{2}|\nabla u(x)|^{2}-f(x) \cdot u(x)\right) d x: u=g\right.$ on ∂D and $\left.u \# \mathcal{L}_{D}=\mathcal{L}_{\Omega}\right\}$

- $f: D \rightarrow \mathbb{R}^{k}$ exterior force.
- g: $\partial D \rightarrow \partial \Omega$ prescribed deformation on the boundary.
- $u \# \mathcal{L}_{D}=\mathcal{L}_{\Omega} \Leftrightarrow \forall B \subset \Omega, \mathcal{L}_{D}\left(u^{-1}(B)\right)=\mathcal{L}_{\Omega}(B)$.

If $d=k$ and u smooth and one-to-one, it's equivalent to

$$
|\operatorname{det} \nabla u|=1 .
$$

A variational problem inspired from elasticity theory

$D \subset \mathbb{R}^{d}, \Omega \subset \mathbb{R}^{k}$ bounded domain with unit volume and smooth boundary. \mathcal{L}_{D} and \mathcal{L}_{Ω} Lebesgue measures restricted to D and Ω respectively.
$\min _{u: D \rightarrow \Omega}\left\{E(u):=\int_{D}\left(\frac{1}{2}|\nabla u(x)|^{2}-f(x) \cdot u(x)\right) d x: u=g\right.$ on ∂D and $\left.u \# \mathcal{L}_{D}=\mathcal{L}_{\Omega}\right\}$

- $f: D \rightarrow \mathbb{R}^{k}$ exterior force.
- $g: \partial D \rightarrow \partial \Omega$ prescribed deformation on the boundary.
- $u \# \mathcal{L}_{D}=\mathcal{L}_{\Omega} \Leftrightarrow \forall B \subset \Omega, \mathcal{L}_{D}\left(u^{-1}(B)\right)=\mathcal{L}_{\Omega}(B)$.

If $d=k$ and u smooth and one-to-one, it's equivalent to

$$
|\operatorname{det} \nabla u|=1
$$

Critical points satisfy $\Delta u+f=(\nabla \omega) \circ u$ in the interior of D, where $\omega: \Omega \rightarrow \mathbb{R}$ is a Lagrange multiplier.

Without the incompressibilty constraint

$$
\min _{u: D \rightarrow \mathbb{R}^{k}}\left\{\int_{D}\left(\frac{1}{2}|\nabla u(x)|^{2}-f(x) \cdot u(x)\right) \mathrm{d} x: u=g \text { on } \partial D \text { and } u \# \mathcal{L}_{D}=\mathcal{L}_{\Omega}\right\}
$$

It's a convex problem.

Theorem

Under mild regularity assumptions on f, g and D, there exists a unique global minimizer u and it satisfies

$$
\begin{cases}\Delta u+f=0 & \text { in } D, \\ u=g & \text { on } \partial D .\end{cases}
$$

Without Dirichlet energy and $D=\Omega$ convex

$$
\min _{u: D \rightarrow D}\left\{\int_{D}\left(\frac{1}{2}|\nabla u(x)|^{2}-f(x) \cdot u(x)\right) d x: u=g \text { on } \partial D \text { and } u \# \mathcal{L}_{D}=\mathcal{L}_{D}\right\}
$$

Theorem (polar factorization) ${ }^{1}$

We assume $f \in L^{2}\left(D, \mathbb{R}^{k}\right)$ and $\left(f \# \mathcal{L}_{D}\right)(B)=0$ if $\mathcal{H}^{d-1}(B)=0$. Then f can be uniquely written

$$
f=(\nabla \omega) \circ u
$$

where $\omega: D \rightarrow \mathbb{R}$ convex and $u: D \rightarrow D$ satisfies $u \# \mathcal{L}_{D}=\mathcal{L}_{D}$. The function u is the unique minimizer of the energy under the constraint $u \# \mathcal{L}_{D}=\mathcal{L}_{D}$.

The mapping $\nabla \omega$ is the optimal transport map of \mathcal{L}_{D} onto $f \# \mathcal{L}_{D}$ for the quadratic cost.

[^0]
Goal of this talk

An existence theory exists for instance in the framework of polyconvex functionals. ${ }^{2}$.
${ }^{2}$ Ball (1976). Convexity conditions and existence theorems in nonlinear elasticity.

Goal of this talk

An existence theory exists for instance in the framework of polyconvex functionals. ${ }^{2}$.

Today: propose a convex relaxation of the problem with Dirichlet energy and incompressibility constraint.

Previous attempts:

- J. Louet (2014). Optimal transport problems with gradient penalization.
- R. Awi and W. Gangbo (2014). A polyconvex integrand; Euler-Lagrange equations and uniqueness of equilibrium.
- T. Mollenhoff and D. Cremers (2019). Lifting vectorial variational problems: a natural formulation based on geometric measure theory and discrete exterior calculus.

Very recent paper on uniqueness and regularity:

- W. Gangbo, M. Jacobs and I. Kim (2020). Well-posedness and regularity for a polyconvex energy.

An example: pure torsion of a cylinder

$$
\begin{gathered}
D=\Omega=B(0,1) \times[0,1] . \text { For } a>0, \\
u_{a}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{R_{a z}\binom{x}{y}}{z}
\end{gathered}
$$

where $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotation by an angle θ.

An example: pure torsion of a cylinder

$$
\begin{gathered}
D=\Omega=B(0,1) \times[0,1] . \text { For } a>0, \\
u_{a}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{R_{a z}\binom{x}{y}}{z}
\end{gathered}
$$

where $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotation by an angle θ.

Result ($f \equiv 0$)

For all $a>0$, the function u_{a} is a critical point of the energy.
We will see that, at least for small a, it is a global minimizer with boundary condition $g=\left.u_{a}\right|_{\partial D}$.

2. A convex relaxation

Transport plan

D

Method

$u: D \rightarrow \Omega$ satisfying $u \# \mathcal{L}_{D}=\mathcal{L}_{\Omega}$ is replaced by $\pi \in \mathcal{P}(D \times \Omega)$ whose marginals are \mathcal{L}_{D} and \mathcal{L}_{Ω}. We write $\pi \in \Pi\left(\mathcal{L}_{D}, \mathcal{L}_{\Omega}\right)$.

- The marginal constraints are linear. For instance, for all $a \in C(D)$:

$$
\iint_{D \times \Omega} a(x) \pi(\mathrm{d} x, \mathrm{~d} y)=\int_{D} a(x) \mathrm{d} x
$$

Transport plan

D

Method

$u: D \rightarrow \Omega$ satisfying $u \# \mathcal{L}_{D}=\mathcal{L}_{\Omega}$ is replaced by $\pi \in \mathcal{P}(D \times \Omega)$ whose marginals are \mathcal{L}_{D} and \mathcal{L}_{Ω}. We write $\pi \in \Pi\left(\mathcal{L}_{D}, \mathcal{L}_{\Omega}\right)$.

- The marginal constraints are linear. For instance, for all $a \in C(D)$:

$$
\iint_{D \times \Omega} a(x) \pi(\mathrm{d} x, \mathrm{~d} y)=\int_{D} a(x) \mathrm{d} x
$$

- By disintegration/fubinization, one can see $\pi \in \Pi\left(\mathcal{L}_{D}, \mathcal{L}_{\Omega}\right)$ as a mapping $\pi: x \in D \rightarrow \pi(x, \cdot) \in \mathcal{P}(\Omega)$.
- If $u: D \rightarrow \Omega$, we can define π_{u} by

$$
\pi_{u}(x, \cdot)=\delta_{y=u(x)} .
$$

Back to the problem

$$
\begin{gathered}
\min _{u: D \rightarrow \Omega}\left\{\int_{D}\left(\frac{1}{2}|\nabla u(x)|^{2}-f(x) \cdot u(x)\right) \mathrm{d} x: u=g \text { on } \partial D \text { and } u \# \mathcal{L}_{D}=\mathcal{L}_{\Omega}\right\} \\
\downarrow \\
\min _{\pi \in \mathcal{P}(D \times \Omega)}\left\{? ?-\iint_{D \times \Omega}(f(x) \cdot y) \pi(\mathrm{dx}, \mathrm{dy}): \text { ?? and } \pi \in \Pi\left(\mathcal{L}_{D}, \mathcal{L}_{\Omega}\right)\right\}
\end{gathered}
$$

Without Dirichlet energy, it's exactly the relaxation used by Yann Brenier in 1987 to prove polar factorization!

Back to the problem

$$
\begin{gathered}
\min _{u: D \rightarrow \Omega}\left\{\int_{D}\left(\frac{1}{2}|\nabla u(x)|^{2}-f(x) \cdot u(x)\right) \mathrm{d} x: u=g \text { on } \partial D \text { and } u \# \mathcal{L}_{D}=\mathcal{L}_{\Omega}\right\} \\
\downarrow \\
\min _{\pi \in \mathcal{P}(D \times \Omega)}\left\{? ?-\iint_{D \times \Omega}(f(x) \cdot y) \pi(\mathrm{dx}, \mathrm{dy}): \text { ?? and } \pi \in \Pi\left(\mathcal{L}_{D}, \mathcal{L}_{\Omega}\right)\right\}
\end{gathered}
$$

Without Dirichlet energy, it's exactly the relaxation used by Yann Brenier in 1987 to prove polar factorization!

Question

How to define a Dirichlet energy for $\pi: D \rightarrow \mathcal{P}(\Omega)$?

Dirichlet energy for measure-valued mappings ${ }^{34}$

$J: D \times \Omega \rightarrow \mathbb{R}^{d \times k}$ matrix-valued measure $\frac{\mathrm{d} /}{\mathrm{d} \pi}$ "density of Jacobian matrix". Constraint between π and J:

$$
\nabla_{x} \pi(x, y)+\nabla_{y} \cdot J(x, y)=0
$$

and the Dirichlet energy is

$$
\iint_{D \times \Omega} \frac{|J|^{2}}{2 \pi}=\iint_{D \times \Omega} \frac{1}{2}\left|\frac{\mathrm{~d} J}{\mathrm{~d} \pi}\right|^{2} \mathrm{~d} \pi
$$

[^1]
Dirichlet energy for measure-valued mappings ${ }^{34}$

$J: D \times \Omega \rightarrow \mathbb{R}^{d \times k}$ matrix-valued measure $\frac{\mathrm{d} /}{\mathrm{d} \pi}$ "density of Jacobian matrix". Constraint between π and J:

$$
\nabla_{x} \pi(x, y)+\nabla_{y} \cdot J(x, y)=0
$$

and the Dirichlet energy is

$$
\iint_{D \times \Omega} \frac{|J|^{2}}{2 \pi}=\iint_{D \times \Omega} \frac{1}{2}\left|\frac{\mathrm{~d} J}{\mathrm{~d} \pi}\right|^{2} \mathrm{~d} \pi
$$

If $\pi(\mathrm{d} x, \mathrm{~d} y)=\pi_{u}(\mathrm{~d} x, \mathrm{~d} y)=\delta_{y=u(x)} \mathrm{d} x$, we choose

$$
\frac{\mathrm{d} J_{u}}{\mathrm{~d} \pi_{u}}(x, y)=\nabla u(x) \quad \text { so that } \quad \iint_{D \times \Omega} \frac{\left|\|_{u}\right|^{2}}{2 \pi_{u}}=\int_{D} \frac{1}{2}|\nabla u(x)|^{2} \mathrm{~d} x \text {. }
$$

This definition has a link with a Dirichlet energy "à la Korevaar and Schoen" for mappings valued in metric spaces.

[^2]
Harmonic mappings without the incompressibility constraint

Harmonic mappings without the incompressibility constraint

Back to the problem with incompressibility: the relaxation

Relaxed (primal) problem

We say that $\pi \in \mathcal{P}(D \times \Omega)$ and $J \in \mathcal{M}\left(D \times \Omega, \mathbb{R}^{d \times k}\right)$ are admissible if

$$
\left\{\begin{array}{cccc}
\pi & \in & \Pi\left(\mathcal{L}_{D}, \mathcal{L}_{\Omega}\right) & \\
\nabla_{x} \pi+\nabla_{y} \cdot \jmath & = & 0 & \text { in } D \times \Omega \\
\pi(x, \cdot) & = & \delta_{y=g(x)} & \text { for } x \in \partial D
\end{array}\right.
$$

and we define

$$
E_{r}(\pi, J)=\iint_{D \times \Omega} \frac{1}{2}\left(\left|\frac{\mathrm{~d} J}{\mathrm{~d} \pi}\right|^{2}(x, y)-f(x) \cdot y\right) \pi(\mathrm{d} x, \mathrm{~d} y)
$$

Minimizing E_{r} among the admissible (π, J) is a convex problem!

Back to the problem with incompressibility: the relaxation

Relaxed (primal) problem

We say that $\pi \in \mathcal{P}(D \times \Omega)$ and $J \in \mathcal{M}\left(D \times \Omega, \mathbb{R}^{d \times k}\right)$ are admissible if

$$
\left\{\begin{array}{cccc}
\pi & \in & \Pi\left(\mathcal{L}_{D}, \mathcal{L}_{\Omega}\right) & \\
\nabla_{x} \pi+\nabla_{y} \cdot \jmath & = & 0 & \text { in } D \times \Omega \\
\pi(x, \cdot) & = & \delta_{y=g(x)} & \text { for } x \in \partial D
\end{array}\right.
$$

and we define

$$
E_{r}(\pi, J)=\iint_{D \times \Omega} \frac{1}{2}\left(\left|\frac{\mathrm{~d} J}{\mathrm{~d} \pi}\right|^{2}(x, y)-f(x) \cdot y\right) \pi(\mathrm{d} x, \mathrm{~d} y)
$$

Minimizing E_{r} among the admissible (π, J) is a convex problem! If $u \# \mathcal{L}_{D}=\mathcal{L}_{\Omega}$ and $u=g$ on ∂D then $\left(\pi_{u}, J_{u}\right)$ admissible and

$$
E(u)=E_{r}\left(\pi_{u}, J_{u}\right) .
$$

The dual problem

Three Lagrange multipliers: ψ, ω for the marginal constraints, φ for $\nabla_{x} \pi+\nabla_{y} \cdot J=0$ and the boundary condition.

The dual problem

We say that (φ, ψ, ω), where $\varphi \in C^{1}\left(D \times \Omega, \mathbb{R}^{d}\right), \psi \in C(D)$ and $\omega \in C(\Omega)$, is admissible if for all $(x, y) \in D \times \Omega$,

$$
\psi(x)+\omega(y)-f(x) \cdot y \geqslant\left(\nabla_{x} \cdot \varphi+\frac{1}{2}\left|\nabla_{y} \varphi\right|^{2}\right)(x, y) .
$$

Then we define

$$
E_{r}^{*}(\varphi, \psi, \omega)=\int_{\partial D} \varphi(x, g(x)) \cdot \mathbf{n}_{D}(x) \mathrm{d} x-\int_{D} \psi(x) \mathrm{d} x-\int_{\Omega} \omega(y) \mathrm{d} y .
$$

Link between the primal and the dual

Proposition (weak duality)

If (π, J) admissible in the primal and (φ, ψ, ω) admissible in the dual,

$$
E_{r}^{*}(\varphi, \psi, \omega) \leqslant E_{r}(\pi, J) .
$$

Link between the primal and the dual

Proposition (weak duality)

If (π, J) admissible in the primal and (φ, ψ, ω) admissible in the dual,

$$
E_{r}^{*}(\varphi, \psi, \omega) \leqslant E_{r}(\pi, J) .
$$

Moreover, equality holds if and only if

$$
\begin{cases}\nabla_{y} \varphi(x, y)=\frac{\mathrm{d} J}{\mathrm{~d} \pi}(x, y) & \text { for } \pi-\text { a.e. } x, y \\ \psi(x)+\omega(y)-f(x) \cdot y=\nabla_{x} \cdot \varphi+\frac{1}{2}\left|\nabla_{y} \varphi\right|^{2} & \text { for } \pi-\text { a.e. } x, y .\end{cases}
$$

Link between the primal and the dual

Proposition (weak duality)

If (π, J) admissible in the primal and (φ, ψ, ω) admissible in the dual,

$$
E_{r}^{*}(\varphi, \psi, \omega) \leqslant E_{r}(\pi, J) .
$$

Moreover, equality holds if and only if

$$
\begin{cases}\nabla_{y} \varphi(x, y)=\frac{\mathrm{d} J}{\mathrm{~d} \pi}(x, y) & \text { for } \pi-\text { a.e. } x, y \\ \psi(x)+\omega(y)-f(x) \cdot y=\nabla_{x} \cdot \varphi+\frac{1}{2}\left|\nabla_{y} \varphi\right|^{2} & \text { for } \pi-\text { a.e. } x, y .\end{cases}
$$

Strong duality: not proven, but should be doable with Fenchel Rockaffellar theorem.

Existence of an optimal dual solution is an open problem (already in the case without incompressibility).

A more general case

Now $W: \mathbb{R}^{d \times k} \rightarrow \mathbb{R}$ convex density of elastic energy and $\Phi: \mathcal{P}(\Omega) \rightarrow \mathbb{R} \cup\{+\infty\}$ convex function of measures.

$$
\min _{u: D \rightarrow \Omega}\left\{\int_{D}(W(\nabla u(x))-f(x) \cdot u(x)) \mathrm{d} x+\Phi\left(u \# \mathcal{L}_{D}\right): u=g \text { on } \partial D\right\} .
$$

A more general case

Now $W: \mathbb{R}^{d \times k} \rightarrow \mathbb{R}$ convex density of elastic energy and $\Phi: \mathcal{P}(\Omega) \rightarrow \mathbb{R} \cup\{+\infty\}$ convex function of measures.

$$
\min _{u: D \rightarrow \Omega}\left\{\int_{D}(W(\nabla u(x))-f(x) \cdot u(x)) d x+\Phi\left(u \# \mathcal{L}_{D}\right): u=g \text { on } \partial D\right\} .
$$

Previous case $W(C)=\frac{1}{2}|C|^{2}$ and $\Phi(\mu)= \begin{cases}0 & \text { if } \mu=\mathcal{L}_{\Omega} \\ +\infty & \text { otherwise }\end{cases}$

A more general case

Now $W: \mathbb{R}^{d \times k} \rightarrow \mathbb{R}$ convex density of elastic energy and $\Phi: \mathcal{P}(\Omega) \rightarrow \mathbb{R} \cup\{+\infty\}$ convex function of measures.

$$
\min _{u: D \rightarrow \Omega}\left\{\int_{D}(W(\nabla u(x))-f(x) \cdot u(x)) \mathrm{d} x+\Phi\left(u \# \mathcal{L}_{D}\right): u=g \text { on } \partial D\right\}
$$

Previous case $W(C)=\frac{1}{2}|C|^{2}$ and $\Phi(\mu)= \begin{cases}0 & \text { if } \mu=\mathcal{L}_{\Omega} \\ +\infty & \text { otherwise }\end{cases}$
Compressible case: take $h:[0,+\infty) \rightarrow \mathbb{R} \cup\{+\infty\}$ convex, then

$$
\int_{D} h(\operatorname{det} \nabla u(x)) \mathrm{d} x=\Phi\left(u \# \mathcal{L}_{D}\right)
$$

for some Φ convex on the set of measures.

Relaxation in the general case

$\mu=u \# \mathcal{L}_{D}$ becomes a variable to optimize.

Primal

(π, J, μ) admissible if

$$
\left\{\begin{array}{l}
\pi \in \Pi\left(\mathcal{L}_{D}, \mu\right) \\
\nabla_{x} \pi+\nabla_{y} \cdot J=0 \text { in } D \times \Omega \\
\pi(x, \cdot)=\delta_{y=g(x)} \text { on } \partial D
\end{array}\right.
$$

and

$$
\begin{aligned}
& E_{r}(\pi, J, \mu)= \\
& \iint \frac{1}{2}\left(W\left(\frac{\mathrm{~d} J}{\mathrm{~d} \pi}\right)-f \cdot y\right) \pi+\Phi(\mu)
\end{aligned}
$$

Dual

(φ, ψ, ω) admissible if

$$
\begin{aligned}
\psi(x)+\omega(y) & -f(x) \cdot y \\
& \geqslant \nabla_{x} \cdot \varphi+W^{*}\left(\nabla_{y} \varphi\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
& E_{r}^{*}(\varphi, \psi, \omega)= \\
& \int_{\partial D} \varphi(g) \cdot \mathbf{n}_{D}-\int_{D} \psi-\Phi^{*}(\omega) .
\end{aligned}
$$

Complementary slackness impose $\omega \in \partial \Phi(\mu)$ at optimality.

3. Tightness of the relaxation and consequences

Strategy

Combining the embedding $u \mapsto\left(\pi_{u}, J_{u}, u \# \mathcal{L}_{D}\right)$ and weak duality,

$$
\min _{u: D \rightarrow \Omega} E(u) \geqslant \min _{(\pi, J, \mu) \text { admissible }} E_{r}(\pi, J, \mu) \geqslant \sup _{(\varphi, \psi, \omega) \text { admissible }} E_{r}^{*}(\varphi, \psi, \omega) \text {. }
$$

Strategy

Combining the embedding $u \mapsto\left(\pi_{u}, J_{u}, u \# \mathcal{L}_{D}\right)$ and weak duality,

$$
\min _{u: D \rightarrow \Omega} E(u) \geqslant \min _{(\pi, J, \mu) \text { admissible }} E_{r}(\pi, J, \mu) \geqslant \sup _{(\varphi, \psi, \omega) \text { admissible }} E_{r}^{*}(\varphi, \psi, \omega)
$$

Important remark

If for $u: D \rightarrow \Omega$ we can find (φ, ψ, ω) admissible such that

$$
E_{r}^{*}(\varphi, \psi, \omega)=E(u)
$$

then u is a global minimizer of the energy E and $\left(\pi_{u}, J_{u}, u \# \mathcal{L}_{D}\right)$ minimizes the relaxed energy.

In this case, the relaxation doesn't give better competitors.

Convexity of the pressure

Theorem

Let $u: D \rightarrow \Omega$ a smooth function satisfying $u=g$ on ∂D and $\omega \in \partial \Phi\left(u \# \mathcal{L}_{D}\right)$ such that

$$
\nabla \cdot(D W(\nabla u))+f=(\nabla \omega) \circ u .
$$

If ω can be extended on \mathbb{R}^{k} in a (strictly) convex function then u is a (the unique) global minimizer global of the energy and ($\pi_{u}, J_{u}, u \# \mathcal{L}_{D}$) minimizes the relaxed energy.
$\partial \Phi(\mu)$ is the subdifferential of the functional Φ at the point μ. If Φ is the incompressibility constraint, $\partial \Phi\left(\mathcal{L}_{\Omega}\right)=C(\Omega)$, and $\partial \Phi\left(\mathcal{L}_{\Omega}\right)=\emptyset$ for $\mu \neq \mathcal{L}_{\Omega}$.

Convexity of the pressure

Theorem

Let $u: D \rightarrow \Omega$ a smooth function satisfying $u=g$ on ∂D and $\omega \in \partial \Phi\left(u \# \mathcal{L}_{D}\right)$ such that

$$
\nabla \cdot(D W(\nabla u))+f=(\nabla \omega) \circ u .
$$

If ω can be extended on \mathbb{R}^{k} in a (strictly) convex function then u is a (the unique) global minimizer global of the energy and $\left(\pi_{u}, J_{u}, u \# \mathcal{L}_{D}\right)$ minimizes the relaxed energy.
$\partial \Phi(\mu)$ is the subdifferential of the functional Φ at the point μ. If Φ is the incompressibility constraint, $\partial \Phi\left(\mathcal{L}_{\Omega}\right)=C(\Omega)$, and $\partial \Phi\left(\mathcal{L}_{\Omega}\right)=\emptyset$ for $\mu \neq \mathcal{L}_{\Omega}$. Idea of the proof. Same competitor then Brenier (in the case $\Phi \equiv 0$) with $\varphi(x, y)=y^{\top} \nabla u(x)$, and ω given by the optimality conditions of u.

Optimal assumption?

Torsion of the cylinder : $2 \pi / a$ vertical period.

If W Dirichlet energy, the pressure is

$$
\omega_{a}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=-\frac{a^{2}}{2}\left(x^{2}+y^{2}\right),
$$

it is $\left(-a^{2}\right)$-convex.

Optimal assumption?

Torsion of the cylinder : $2 \pi / a$ vertical period.

If W Dirichlet energy, the pressure is

$$
\omega_{a}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=-\frac{a^{2}}{2}\left(x^{2}+y^{2}\right),
$$

it is $\left(-a^{2}\right)$-convex.
In general, in the case $f=0$, the linearization of the problem yields Stokes equations:

$$
\begin{cases}\Delta u & =\nabla p \\ \nabla \cdot u & =0\end{cases}
$$

and $p \sim \omega$ satisfies $\Delta p=0$, it is not convex generically.

An improvement

We restrict to the case Dirichlet case $W(C)=1 / 2|C|^{2}$. Let $\lambda_{1}(D)>0$ be the first eigenvalue of the Dirichlet Laplacian on D.

Theorem

Let $u: D \rightarrow \Omega$ a smooth function satisfying $u=g$ on ∂D and $\omega \in \partial \Phi\left(u \# \mathcal{L}_{D}\right)$ such that

$$
\Delta u+f=(\nabla \omega) \circ u .
$$

If ω can be extended on \mathbb{R}^{k} in a λ-convex function with $\lambda>-\lambda_{1}(D)$ then u is the unique global minimizer global of the energy and ($\left.\pi_{u}, J_{u}, u \# \mathcal{L}_{D}\right)$ minimizes the relaxed energy.

In the pure torsion of the cylinder, global optimality in the case a small. For large a, there holds $\min E_{r}<\min E$.

An improvement

We restrict to the case Dirichlet case $W(C)=1 / 2|C|^{2}$. Let $\lambda_{1}(D)>0$ be the first eigenvalue of the Dirichlet Laplacian on D.

Theorem

Let $u: D \rightarrow \Omega$ a smooth function satisfying $u=g$ on ∂D and $\omega \in \partial \Phi\left(u \# \mathcal{L}_{D}\right)$ such that

$$
\Delta u+f=(\nabla \omega) \circ u .
$$

If ω can be extended on \mathbb{R}^{k} in a λ-convex function with $\lambda>-\lambda_{1}(D)$ then u is the unique global minimizer global of the energy and ($\left.\pi_{u}, J_{u}, u \# \mathcal{L}_{D}\right)$ minimizes the relaxed energy.

In the pure torsion of the cylinder, global optimality in the case a small. For large a, there holds $\min E_{r}<\min E$. Idea of the proof. There was still some leeway in Brenier's competitor.

A simpler proof of global optimality

It is enough to replace Φ by its linear approximation in the space of measures:

$$
E(u)=\int_{D}(W(\nabla u)-f \cdot u)+\Phi\left(u \# \mathcal{L}_{D}\right)
$$

A simpler proof of global optimality

It is enough to replace Φ by its linear approximation in the space of measures:

$$
\begin{aligned}
E(u)= & \int_{D}(W(\nabla u)-f \cdot u)+\Phi\left(u \# \mathcal{L}_{D}\right) \\
& \underbrace{\geqslant}_{=\text {if } \omega \in \partial \Phi\left(u \# \mathcal{L}_{D}\right)} \int_{D}(W(\nabla u)-f \cdot u)+\int_{\Omega} \omega \mathrm{d}\left(u \# \mathcal{L}_{D}\right)-\Phi^{*}(\omega) \\
& =\int_{D}(W(\nabla u)-f \cdot u)+\int_{D} \omega \circ u-\Phi^{*}(\omega)=: \tilde{E}_{\omega}(u)-\Phi^{*}(\omega) .
\end{aligned}
$$

A simpler proof of global optimality

It is enough to replace Φ by its linear approximation in the space of measures:

$$
\begin{aligned}
E(u)= & \int_{D}(W(\nabla u)-f \cdot u)+\Phi\left(u \# \mathcal{L}_{D}\right) \\
& \underbrace{\geqslant}_{=\text {if } \omega \in \partial \Phi\left(u \# \mathcal{L}_{D}\right)} \int_{D}(W(\nabla u)-f \cdot u)+\int_{\Omega} \omega \mathrm{d}\left(u \# \mathcal{L}_{D}\right)-\Phi^{*}(\omega) \\
& =\int_{D}(W(\nabla u)-f \cdot u)+\int_{D} \omega \circ u-\Phi^{*}(\omega)=: \tilde{E}_{\omega}(u)-\Phi^{*}(\omega) .
\end{aligned}
$$

If u is a global minimizer of \tilde{E}_{ω} for $\omega \in \partial \Phi\left(u \# \mathcal{L}_{D}\right)$ then it is a global minimizer of E. The energy \tilde{E}_{ω} is convex under convexity assumption on ω.

A simpler proof of global optimality

It is enough to replace Φ by its linear approximation in the space of measures:

$$
\begin{aligned}
E(u)= & \int_{D}(W(\nabla u)-f \cdot u)+\Phi\left(u \# \mathcal{L}_{D}\right) \\
& \underbrace{\geqslant}_{=\text {if } \omega \in \partial \Phi\left(u \# \mathcal{L}_{D}\right)} \int_{D}(W(\nabla u)-f \cdot u)+\int_{\Omega} \omega \mathrm{d}\left(u \# \mathcal{L}_{D}\right)-\Phi^{*}(\omega) \\
& =\int_{D}(W(\nabla u)-f \cdot u)+\int_{D} \omega \circ u-\Phi^{*}(\omega)=: \tilde{E}_{\omega}(u)-\Phi^{*}(\omega) .
\end{aligned}
$$

If u is a global minimizer of \tilde{E}_{ω} for $\omega \in \partial \Phi\left(u \# \mathcal{L}_{D}\right)$ then it is a global minimizer of E. The energy \tilde{E}_{ω} is convex under convexity assumption on ω.

The improvement from ω convex to $\omega \lambda$-convex works if W is uniformly convex.

Conclusion

Results :

- Convex relaxation of a non-convex problem.
- The relaxation is tight under regularity and smallness assumption on the solution.
- But the consequences can be obtained by simpler proofs.

Conclusion

Results :

- Convex relaxation of a non-convex problem.
- The relaxation is tight under regularity and smallness assumption on the solution.
- But the consequences can be obtained by simpler proofs.

Perspectives :

- Numerical simulations.
- Regularity of ω thanks to "regularity by duality" techniques.
- Convexification of other problems in calculus of variations.

Conclusion

Results :

- Convex relaxation of a non-convex problem.
- The relaxation is tight under regularity and smallness assumption on the solution.
- But the consequences can be obtained by simpler proofs.

Perspectives :

- Numerical simulations.
- Regularity of ω thanks to "regularity by duality" techniques.
- Convexification of other problems in calculus of variations.

Thank you for your attention

Link with a metric definition à la Korevaar and Schoen ${ }^{5}$

Take a convex Ω. Quadratic Wasserstein distance on $\mathcal{P}(\Omega)$:

$$
\mathcal{W}(\mu, \nu)=\min _{\gamma \in \mathcal{P}(\Omega \times \Omega)}\left\{\iint|y-z|^{2} \gamma(\mathrm{~d} y, \mathrm{~d} z): \gamma \in \Pi(\mu, \nu)\right\} .
$$

Theorem

Let $\pi \in \mathcal{P}(D \times \Omega)$ whose first marginal is \mathcal{L}_{D}. Then

$$
\begin{aligned}
\min _{j}\left\{\iint_{D \times \Omega} \frac{|J|^{2}}{2 \pi}: \nabla_{x} \pi\right. & \left.+\nabla_{y} \cdot J=0\right\} \\
& =\lim _{\varepsilon \rightarrow 0} C_{d} \iint_{D \times D} \frac{\mathcal{W}^{2}\left(\pi(x, \cdot), \pi\left(x^{\prime}, \cdot\right)\right)}{2 \varepsilon^{d+2}} \mathbb{1}_{\left|x-x^{\prime}\right| \leqslant \varepsilon} \mathrm{d} x \mathrm{~d} x^{\prime}
\end{aligned}
$$

where C_{d} constant depending only on d.
${ }^{5}$ Korevaar and Schoen (1993). Sobolev spaces and harmonic maps for metric space targets.

[^0]: ${ }^{1}$ Brenier (1987). Décomposition polaire et réarrangement monotone des champs de vecteurs.

[^1]: ${ }^{3}$ Brenier (2003). Extended Monge-Kantorovich theory.
 ${ }^{4}$ Lavenant (2019). Harmonic mappings valued in the Wasserstein space.

[^2]: ${ }^{3}$ Brenier (2003). Extended Monge-Kantorovich theory.
 ${ }^{4}$ Lavenant (2019). Harmonic mappings valued in the Wasserstein space.

