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1. A non convex problem



A variational problem inspired from elasticity theory

D ⊂ Rd, Ω ⊂ Rk bounded domain with unit volume and smooth boundary.
LD and LΩ Lebesgue measures restricted to D and Ω respectively.

min
u:D→Ω

{
E(u) :=

ˆ
D

(
1

2
|∇u(x)|2 − f(x) · u(x)

)
dx : u = g on ∂D and u#LD = LΩ

}

• f : D→ Rk exterior force.
• g : ∂D→ ∂Ω prescribed deformation on the boundary.
• u#LD = LΩ ⇔ ∀B ⊂ Ω, LD(u−1(B)) = LΩ(B).
If d = k and u smooth and one-to-one, it’s equivalent to

|det∇u| = 1.

Critical points satisfy ∆u+ f = (∇ω) ◦ u in the interior of D, where ω : Ω → R
is a Lagrange multiplier.
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Without the incompressibilty constraint

min
u:D→Rk

{ˆ
D

(
1

2
|∇u(x)|2 − f(x) · u(x)

)
dx : u = g on ∂D and((((((u#LD = LΩ

}

It’s a convex problem.

Theorem
Under mild regularity assumptions on f,g and D, there exists a unique
global minimizer u and it satisfies{

∆u+ f = 0 in D,
u = g on ∂D.
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Without Dirichlet energy and D = Ω convex

min
u:D→D

{ˆ
D

(
�����1

2
|∇u(x)|2 − f(x) · u(x)

)
dx : ((((((u = g on ∂D and u#LD = LD

}
Theorem (polar factorization)1

We assume f ∈ L2(D,Rk) and (f#LD)(B) = 0 if Hd−1(B) = 0. Then f can be
uniquely written

f = (∇ω) ◦ u

where ω : D→ R convex and u : D→ D satisfies u#LD = LD. The function u
is the unique minimizer of the energy under the constraint u#LD = LD.

The mapping ∇ω is the optimal transport map of LD onto f#LD for the
quadratic cost.

1Brenier (1987). Décomposition polaire et réarrangement monotone des champs de vecteurs.
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Goal of this talk

An existence theory exists for instance in the framework of polyconvex
functionals. 2.

Today: propose a convex relaxation of the problem with Dirichlet energy and
incompressibility constraint.

Previous attempts:

• J. Louet (2014). Optimal transport problems with gradient penalization.
• R. Awi and W. Gangbo (2014). A polyconvex integrand; Euler–Lagrange
equations and uniqueness of equilibrium.

• T. Mollenhoff and D. Cremers (2019). Lifting vectorial variational
problems: a natural formulation based on geometric measure theory
and discrete exterior calculus.

Very recent paper on uniqueness and regularity:

• W. Gangbo, M. Jacobs and I. Kim (2020). Well-posedness and regularity
for a polyconvex energy.

2Ball (1976). Convexity conditions and existence theorems in nonlinear elasticity. 6/22
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An example: pure torsion of a cylinder

u

D D

D = Ω = B(0, 1)× [0, 1]. For a > 0,

ua

xy
z

 =

Raz
(
x
y

)
z


where Rθ : R2 → R2 rotation by an
angle θ.

Result (f ≡ 0)

For all a > 0, the function ua is a critical point of the energy.

We will see that, at least for small a, it is a global minimizer with boundary
condition g = ua|∂D.
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2. A convex relaxation



Transport plan

D

Ω

Ω

x

π(x, ·)π

x

u(x)

D

Relaxation

Method
u : D→ Ω satisfying u#LD = LΩ is replaced by
π ∈ P(D× Ω) whose marginals are LD and LΩ.
We write π ∈ Π(LD,LΩ).

• The marginal constraints are linear. For
instance, for all a ∈ C(D):

¨
D×Ω

a(x)π(dx,dy) =
ˆ
D
a(x)dx

• By disintegration/fubinization, one can see
π ∈ Π(LD,LΩ) as a mapping
π : x ∈ D→ π(x, ·) ∈ P(Ω).

• If u : D→ Ω, we can define πu by
πu(x, ·) = δy=u(x).
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Back to the problem

min
u:D→Ω

{ˆ
D

(
1

2
|∇u(x)|2−f(x) · u(x)

)
dx : u = g on ∂D and u#LD = LΩ

}

↓

min
π∈P(D×Ω)

{
??−

¨
D×Ω

(f(x) · y) π(dx,dy) : ?? and π ∈ Π(LD,LΩ)

}
Without Dirichlet energy, it’s exactly the relaxation used by Yann Brenier in
1987 to prove polar factorization!

Question
How to define a Dirichlet energy for π : D→ P(Ω)?
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Dirichlet energy for measure-valued mappings3 4

J : D× Ω → Rd×k matrix-valued measure dJ
dπ “density of Jacobian matrix”.

Constraint between π and J:

∇xπ(x, y) +∇y · J(x, y) = 0,

and the Dirichlet energy is¨
D×Ω

|J|2
2π

=

¨
D×Ω

1

2

∣∣∣∣ dJ
dπ

∣∣∣∣2 dπ

If π(dx,dy) = πu(dx,dy) = δy=u(x)dx, we choose
dJu
dπu

(x, y) = ∇u(x) so that
¨
D×Ω

|Ju|2
2πu

=

ˆ
D

1

2
|∇u(x)|2dx.

This definition has a link with a Dirichlet energy “à la Korevaar and Schoen”
for mappings valued in metric spaces.

3Brenier (2003). Extended Monge-Kantorovich theory.
4Lavenant (2019). Harmonic mappings valued in the Wasserstein space.
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Harmonic mappings without the incompressibility constraint
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Harmonic mappings without the incompressibility constraint
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Back to the problem with incompressibility: the relaxation

Relaxed (primal) problem
We say that π ∈ P(D× Ω) and J ∈ M(D× Ω,Rd×k) are admissible if

π ∈ Π(LD,LΩ)

∇xπ +∇y · J = 0 in D× Ω

π(x, ·) = δy=g(x) for x ∈ ∂D

and we define

Er(π, J) =
¨
D×Ω

1

2

(∣∣∣∣ dJ
dπ

∣∣∣∣2 (x, y)− f(x) · y
)
π(dx,dy)

Minimizing Er among the admissible (π, J) is a convex problem!

If u#LD = LΩ and u = g on ∂D then (πu, Ju) admissible and

E(u) = Er(πu, Ju).
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The dual problem

Three Lagrange multipliers: ψ, ω for the marginal constraints, φ for
∇xπ +∇y · J = 0 and the boundary condition.

The dual problem
We say that (φ,ψ, ω), where φ ∈ C1(D× Ω,Rd), ψ ∈ C(D) and ω ∈ C(Ω), is
admissible if for all (x, y) ∈ D× Ω,

ψ(x) + ω(y)− f(x) · y >
(
∇x · φ+

1

2
|∇yφ|2

)
(x, y).

Then we define

E∗r (φ,ψ, ω) =
ˆ
∂D
φ(x,g(x)) · nD(x)dx−

ˆ
D
ψ(x)dx−

ˆ
Ω

ω(y)dy.
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Link between the primal and the dual

Proposition (weak duality)
If (π, J) admissible in the primal and (φ,ψ, ω) admissible in the dual,

E∗r (φ,ψ, ω) 6 Er(π, J).

Moreover, equality holds if and only if
∇yφ(x, y) =

dJ
dπ (x, y) for π − a.e. x, y

ψ(x) + ω(y)− f(x) · y = ∇x · φ+
1

2
|∇yφ|2 for π − a.e. x, y.

Strong duality: not proven, but should be doable with Fenchel Rockaffellar
theorem.

Existence of an optimal dual solution is an open problem (already in the
case without incompressibility).
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A more general case

Now W : Rd×k → R convex density of elastic energy and
Φ : P(Ω) → R ∪ {+∞} convex function of measures.

min
u:D→Ω

{ˆ
D
(W(∇u(x))− f(x) · u(x))dx+Φ(u#LD) : u = g on ∂D

}
.

Previous case W(C) = 1

2
|C|2 and Φ(µ) =

{
0 if µ = LΩ

+∞ otherwise

Compressible case: take h : [0,+∞) → R ∪ {+∞} convex, then
ˆ
D
h(det∇u(x))dx = Φ(u#LD),

for some Φ convex on the set of measures.
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Relaxation in the general case

µ = u#LD becomes a variable to optimize.

Primal
(π, J, µ) admissible if

π ∈ Π(LD, µ)
∇xπ +∇y · J = 0 in D× Ω

π(x, ·) = δy=g(x) on ∂D

and

Er(π, J, µ) =¨
1

2

(
W
(

dJ
dπ

)
− f · y

)
π +Φ(µ).

Dual
(φ,ψ, ω) admissible if

ψ(x) + ω(y)− f(x) · y
> ∇x · φ+W∗ (∇yφ).

and

E∗r (φ,ψ, ω) =ˆ
∂D
φ(g) · nD −

ˆ
D
ψ − Φ∗(ω).

Complementary slackness impose ω ∈ ∂Φ(µ) at optimality. 16/22



3. Tightness of the relaxation and
consequences



Strategy

Combining the embedding u 7→ (πu, Ju,u#LD) and weak duality,

min
u:D→Ω

E(u) > min
(π,J,µ) admissible

Er(π, J, µ) > sup
(φ,ψ,ω) admissible

E∗r (φ,ψ, ω).

Important remark
If for u : D→ Ω we can find (φ,ψ, ω) admissible such that

E∗r (φ,ψ, ω) = E(u)

then u is a global minimizer of the energy E and (πu, Ju,u#LD) minimizes
the relaxed energy.

In this case, the relaxation doesn’t give better competitors.
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Convexity of the pressure

Theorem
Let u : D→ Ω a smooth function satisfying u = g on ∂D and ω ∈ ∂Φ(u#LD)
such that

∇ · (DW(∇u)) + f = (∇ω) ◦ u.

If ω can be extended on Rk in a (strictly) convex function then u is a (the
unique) global minimizer global of the energy and (πu, Ju,u#LD) minimizes
the relaxed energy.

∂Φ(µ) is the subdifferential of the functional Φ at the point µ. If Φ is the
incompressibility constraint, ∂Φ(LΩ) = C(Ω), and ∂Φ(LΩ) = ∅ for µ 6= LΩ.

Idea of the proof. Same competitor then Brenier (in the case Φ ≡ 0) with
φ(x, y) = y⊤∇u(x), and ω given by the optimality conditions of u.
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Optimal assumption?

u

D D

Torsion of the cylinder : 2π/a verti-
cal period.

If W Dirichlet energy, the pressure
is

ωa

xy
z

 = −a
2

2
(x2 + y2),

it is (−a2)-convex.

In general, in the case f = 0, the linearization of the problem yields Stokes
equations: {

∆u = ∇p
∇ · u = 0

and p ∼ ω satisfies ∆p = 0, it is not convex generically.
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An improvement

We restrict to the case Dirichlet case W(C) = 1/2|C|2. Let λ1(D) > 0 be the first
eigenvalue of the Dirichlet Laplacian on D.

Theorem
Let u : D→ Ω a smooth function satisfying u = g on ∂D and ω ∈ ∂Φ(u#LD)
such that

∆u+ f = (∇ω) ◦ u.

If ω can be extended on Rk in a λ-convex function with λ > −λ1(D) then u
is the unique global minimizer global of the energy and (πu, Ju,u#LD)
minimizes the relaxed energy.

In the pure torsion of the cylinder, global optimality in the case a small. For
large a, there holds min Er < min E.

Idea of the proof. There was still some leeway in Brenier’s competitor.
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A simpler proof of global optimality

It is enough to replace Φ by its linear approximation in the space of
measures:

E(u) =
ˆ
D
(W(∇u)− f · u) + Φ(u#LD)

>︸︷︷︸
= if ω∈∂Φ(u#LD)

ˆ
D
(W(∇u)− f · u) +

ˆ
Ω

ω d(u#LD)− Φ∗(ω)

=

ˆ
D
(W(∇u)− f · u) +

ˆ
D
ω ◦ u− Φ∗(ω) =: Ẽω(u)− Φ∗(ω).

If u is a global minimizer of Ẽω for ω ∈ ∂Φ(u#LD) then it is a global
minimizer of E. The energy Ẽω is convex under convexity assumption on ω.

The improvement from ω convex to ω λ-convex works if W is uniformly
convex.
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ω ◦ u− Φ∗(ω) =: Ẽω(u)− Φ∗(ω).

If u is a global minimizer of Ẽω for ω ∈ ∂Φ(u#LD) then it is a global
minimizer of E. The energy Ẽω is convex under convexity assumption on ω.

The improvement from ω convex to ω λ-convex works if W is uniformly
convex.
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Conclusion

Results :

• Convex relaxation of a non-convex problem.
• The relaxation is tight under regularity and smallness assumption on
the solution.

• But the consequences can be obtained by simpler proofs.

Perspectives :

• Numerical simulations.
• Regularity of ω thanks to “regularity by duality” techniques.
• Convexification of other problems in calculus of variations.

Thank you for your attention
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Link with a metric definition à la Korevaar and Schoen5

Take a convex Ω. Quadratic Wasserstein distance on P(Ω) :

W(µ, ν) = min
γ∈P(Ω×Ω)

{¨
|y− z|2 γ(dy,dz) : γ ∈ Π(µ, ν)

}
.

Theorem
Let π ∈ P(D× Ω) whose first marginal is LD. Then

min
J

{¨
D×Ω

|J|2
2π

: ∇xπ +∇y · J = 0

}
= lim
ε→0

Cd
¨
D×D

W2(π(x, ·), π(x′, ·))
2εd+2

1|x−x′|6ε dxdx′

where Cd constant depending only on d.

5Korevaar and Schoen (1993). Sobolev spaces and harmonic maps for metric space targets.
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