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Goal of this presentation

Show an equivalence between two problems of calculus of variations:

+ The dynamical formulation (a.k.a Benamou Brenier formulation) of
regularized unbalanced optimal transport.

+ Entropy minimization with respect to the law of branching Brownian
Motion (“Branching Schrodinger problem”).
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1. The Schrodinger problem

2. The branching Schrodinger problem

10/22



1. The Schrodinger problem

e Léonard (2013): A survey of the Schrodinger problem and some of
its connections with optimal transport;
e Gentil, Léonard, and Ripani (2017): About the analogy between

optimal transport and minimal entropy.
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A problem coming from Large deviation

N particles ~ « at time t = 0. They follow Brownian motion.

Observed distribution at time t = 1,
° B#£N(0,1)%a.

The problem
If N > 1, given this unlikely event, what is the most likely evolution?

Theory of Large Deviation: entropy minimization with respect to the law of
Brownian motion.
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Schrodinger problem and Regularized Optimal Transport
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State space TY the d-dimensional torus, o, 3 € P(T9) and v > 0.

Space 2 = (([0,1],T%). R¥ € P(Q)
Wiener measure with diffusivity » and
Xo ~ L = dx under R”.

The Schrodinger problem

Given o, f € P(TY), find P € P()
which minimizes

H(P|R) ::/ng (dd; (X)) dP(X).
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State space TY the d-dimensional torus, o, 3 € P(T9) and v > 0.

Space 2 = (([0,1],T%). R¥ € P(Q)
Wiener measure with diffusivity » and
Xo ~ L = dx under R”.

The Schrodinger problem

Given o, f € P(TY), find P € P()
which minimizes

H(P|R) ::/Qlog (dd; (X)) dP(X).

such that X, ~ « and X; ~ S under P.

Regularized Optimal Transport

Look for p and v time-dependent
density and velocity field which
minimize

1 2
Alp,v) = / ‘V(t’;)' p(t, X) dtdx
0

Td

such that pg = «, p1 = 8 and
1%
Op + div(pv) = §Ap

v(ty, )

& Py

Pty B 12/22




Equivalence between the problems

Both problems are well-posed if H(a|L£), H(B|L£) < +oc.

From Schrodinger to ROT
Given P € P(2) with H(P|RY) < +o0,
define p; := Lawp(X;),
xt] |
Then (p,v) admissible and
vH(a|L) + A(p, V) < vH(P|R).

v(t,X:) = 1 E
(&, ) ha%ﬁgo F

Kiph — Xt
h
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Equivalence between the problems

Both problems are well-posed if H(a|L£), H(B|L£) < +oc.

From Schrodinger to ROT
Given P € P(2) with H(P|RY) < +o0,
define p; := Lawp(X;),

From ROT to Schrodinger

If (p,v) admissible with v
smooth, P the law of the SDE

Xt:| 2 dX; = V(t,Xt) dt + \/;dBt
Then P admissible and
vH(a|L)+A(p, V) = vH(P|RY).

v(t,X;) := lim Ep

Xegh — Xt
h—0,h>0

h

Then (p,v) admissible and

vH(@|L) + A(p, v) < vH(P|RY).
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Consequence: equality of the values

Theorem

For any «, 8 with H(«|L), H(B|£) < +o0, there holds

vH(al) + min {A(p,v) © Gp+ div(pv) = ZAp, po = a,pr = B
= mPin{yH(P|R”) : Xo ~aand X; ~ S under P}.

Moreover, if (p,v) and P optimal then P is the law of the SDE with drift v.

1422



2. The branching Schrodinger
problem

e Liero, Mielke, and Savaré (2018): Optimal entropy-transport
problems and a new Hellinger-Kantorovich distance between positive
measures;

e Chizat (2017): Unbalanced optimal transport: Models, numerical
methods, applications;

e Kondratyev, Monsaingeon, and Vorotnikov (2016): A new optimal
transport distance on the space of finite Radon measures;

e Baradat and Lavenant (2021): Arxiv 2111.01666.



The Branching Brownian motion

Particles diffuse (), at tempo-
ral rate A\ they “branch” and
have a k offsprings, drawn from

(Pr)k=0,1,... € P(N).
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The Branching Brownian motion

Parameters: diffusivity » > 0, branching rate A > 0, law (pg)r—o,1,... € P(N).

Particles diffuse (), at tempo-
ral rate A\ they “branch” and
have a k offsprings, drawn from

(Pr)k=0,1,... € P(N).

At time t, random measure M; = Z Sx.
Xe{particles alive at time t}

Description

The Branching Brownian Motion is a probability distribution on
Q := cadlag([0, 1], M (T9)).

Assumptions: 0 < v, A < coand » _ kpy, < +oc. 15/22



The Branching Schrodinger problem

Ep[M;] is the deterministic measure Ep[M;](A) = Ep[M:(A)].

M,(A) =1
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Ep[M;] is the deterministic measure Ep[M¢](A) = Ep[M;:(A)].

A

E[M|(4) = 4/3

R law of the Branching Brownian Motion with parameters v, A and (py).

Branching Schrodinger problem

Given a, f € M, (T9), find P € P(Q) which minimizes H(P|R) under the
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The Branching Schrodinger problem

Ep[M;] is the deterministic measure Ep[M;](A) = Ep[M:(A)].

A

E[M|(4) = 4/3

R law of the Branching Brownian Motion with parameters v, A and (py).

Branching Schrodinger problem

Given a, f € M, (T9), find P € P(Q) which minimizes H(P|R) under the
constraints Ep[Mo] = o and Ep[M;] = 3.

Important remark. Ill-posed problem as the constraints are not closed:
{P : Ep[My] = @ and Ep[M;] = 5}

is not closed for a topology making H(:|R) continuous.
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The regularized unbalanced optimal transport problem

Regularized Optimal Transport
Look for p,v time-dependent density, velocity field which
minimize

/ |V p(t, x) dtdx

under the constraint py = o, p1 = 8 and dp + div(pv) = %Ap
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The regularized unbalanced optimal transport problem

U : R — [0, +oc] convex function. The field r = r(t, x) is the growth rate.
Regularized Unbalanced Optimal Transport
Look for p, v, r time-dependent density, velocity and scalar field which

minimize
|v
A(p,Vv,r) p(t,x) dtdx + p(t, x) dtdx

under the constraint py = o, p1 = 8 and dp + div(pv) = %Ap -+ rp.

B
Typical ¥ Pty

/1/./ /
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The regularized unbalanced optimal transport problem

U : R — [0, +oc] convex function. The field r = r(t, x) is the growth rate.

Regularized Unbalanced Optimal Transport

Look for p, v, r time-dependent density, velocity and scalar field which
minimize

A(p,Vv,r) / |V p(t, x) dtdx +// p(t, x) dtdx

under the constraint py = o, p1 = 8 and dp + div(pv) = %Ap -+ rp.

B
Typical ¥ Pty

If ¥ grows polyno-
o / mially at +oco and
H(B|IL) < oo, then

* >
P 1‘(/\.44‘)
{ -
- Creation of mass We“ posed'

a with rate r(¢, z)
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Equivalence of the values

Choose ¥ depending on ), v and (pi) (see after). Write
RUOt(O&,“S) = Ipn\}I} {A(P, v, r) : afp+ = (pV) = gAp+ rp, po =&, p1 = ﬂ}

BrSch(a, 5) := igf{uH(P\R) : Ep[Mo] = aand Ep[M;] = S5}
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Equivalence of the values

Choose ¥ depending on ), v and (pi) (see after). Write
Ruot(a, ) := min {A(p, v,r) : Op+ V- (pv) = KAer rp, po =, p1 = ﬂ}
PG 2
BrSch(a, 5) := igf{uH(P\R) : Ep[Mo] = aand Ep[M;] = S5}
Define L : ¢ — logEg [exp ({, Mo))] log-Laplace transform of Ry. We expect:
vL*(a) + Ruot(a, B) # BrSch(a, )
Cannot hold for all o, 3. (e.g. o = 0)

Theorem (equivalence of the values)

The function («, 8) — vL*(a) + Ruot(a, 3) is the lower semi continuous
envelope of («, 3) — BrSch(e, 8) for the topology of weak convergence.

Idea of the proof: duality.
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Equivalence of the competitors

Additional assumption: one finite exponential moment for My and (py).

Intuition: as before v drift,
+oo

r=>Y (k—1)Ap, for modified
k=0

branching rate ), modified law

of offsprings (Pr)ren-

19/22



Equivalence of the competitors

Additional assumption: one finite exponential moment for My and (py).

Intuition: as before v drift,
+oo

r=> (k—1)Ap, for modified
k=0
branching rate ), modified law

of offsprings (Pr)ren-

From Branching Schrodinger to RUOT
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If H(P|R) < +oo then P is the law of
BBM with random (predictable) space
time dependent drift v, A and (py)ren.
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Equivalence of the competitors

Additional assumption: one finite exponential moment for My and (py).

From Branching Schrodinger to RUOT

Given P with H(P|R) < +oc we build

(p, v, r) competitor for RUOT with
vLl*(a) + A(p, v, r) < vH(P|R).

If H(P|R) < +oo then P is the law of
BBM with random (predictable) space

time dependent drift v, A and (py)ren.

Intuition: as before v drift,
+oo

r=> (k—1)Ap, for modified
k=0
branching rate ), modified law

of offsprings (Pr)ren-

From RUOT to Branching
Schrodinger

Up to smoothing everything
(including a, ) from (p, v, r)
admissible we build a BBM with
drift vand )\, (Pr)ren depending
on r such that

vL*(a) + A(p,V,r) = vH(P|R).

19/22



Choosing the right growth penalization

Definition (growth penalization)
Given v, X and (pg) choose

4o
U(r) =v inf < H(A(Pr)|A(pr)) such that > (k—1)Ap,=r¢.
X, (Pr) k=0

Equivalently with ®,(X) = > ppX* then U*(s) = v\ (e—S/Vq>p(eS/") _ 1),
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Definition (growth penalization)
Given v, X and (pg) choose

4o
U(r) =v inf < H(A(Pr)|A(pr)) such that > (k—1)Ap,=r¢.
X, (Pr) k=0

Equivalently with ®,(X) = > ppX* then U*(s) = v\ (e—S/Vq>p(eS/") _ 1),

U(r)

|fp() = Pp2 = ]./2 then

Po P2 P3 P4
*(e) — a2 =
U*(s) = \v (cosh [V} 1) ,
¥ convex, minimal for r = 0. r
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Choosing the right growth penalization

Definition (growth penalization)
Given v, X and (pg) choose

4o
U(r) =v inf < H(A(Pr)|A(pr)) such that > (k—1)Ap,=r¢.
X, (Pr) k=0

Equivalently with ®,(X) = > ppX* then U*(s) = v\ (e—S/Vq>p(eS/") _ 1),

¥(r)

If py = 0.95, p; = 0.05

Po P2 P3 Pa

then ¥ minimal for r < 0.

20/22



Choosing the right growth penalization

Definition (growth penalization)
Given v, X and (pg) choose

4o
U(r) =v inf < H(A(Pr)|A(pr)) such that > (k—1)Ap,=r¢.
X, (Pr) k=0

Equivalently with ®,(X) = > ppX* then U*(s) = v\ (e—S/Vq>p(eS/") _ 1),

w(r)

If po = 0.2, py = 0.8 (no
killing allowed),

PR S

Po P2 P3 Pa ]

then ¥(r) = +oo forr <0. r
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Choosing the right growth penalization

Definition (growth penalization)
Given v, X and (pg) choose

4o
U(r) =v inf < H(A(Pr)|A(pr)) such that > (k—1)Ap,=r¢.
X, (Pr) k=0

Equivalently with ®,(X) = > ppX* then U*(s) = v\ (e—s/uq)p(es/,,) B 1).
If pp = 1/(kR—1)*?,and py = W

1 — 3>, Pr (N0 exponential
moment)

Po P2 P3 Pa

then U(r) =0forr>r.
20/22
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One motivation: biology

Pty
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Pty

Gene expression space

] . .
Reconstructed trajectories

Idea: use the optimal trans-
port to reconstruct the tem-
poral couplings.

* Schiebinger et al,
Optimal-transport analysis
of single-cell gene
expression identifies
developmental trajectories
in reprogramming (2019).

* Lavenant, Zhang, Kim and
Schiebinger, Towards a
mathematical theory of
trajectory inference (2021).
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One motivation: biology

Idea: use the optimal trans-
port to reconstruct the tem-
poral couplings.

* Schiebinger et al,
Optimal-transport analysis
of single-cell gene
expression identifies
developmental trajectories
in reprogramming (2019).

* Lavenant, Zhang, Kim and
Schiebinger, Towards a

mathematical theory of
trajectory inference (2021).
In reality cells divided and die. Use unbalanced optimal
transport to account for cell
division. Sk

O Branching - Death



What | have not presented:

+ Proofs of the equivalence (convex analysis, stochastic analysis).
+ Small noise limit v, A\ — 0: partial optimal transport (¥(r) = |r|).
+ Numerical simulations with the dynamical formulation of RUOT.

» Formal computations for other measure valued processes.
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What | have not presented:

+ Proofs of the equivalence (convex analysis, stochastic analysis).
+ Small noise limit v, A\ — 0: partial optimal transport (¥(r) = |r|).
+ Numerical simulations with the dynamical formulation of RUOT.

» Formal computations for other measure valued processes.

Thank you for your attention
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Other measure valued processes?

Given a process R, need for the computation of Eg [exp((f, M1))| Mo]-



Other measure valued processes?

Given a process R, need for the computation of Eg [exp({8, M1))| Mo].
Example (Dawson-Watanabe)
If R Dawson-Watanabe superprocess then the associated PDE is
1 1
ZA Z4h2 —
0 + 3 o+ 2¢ 0

as
Er [exp({(p(L, -), M1))| Mo] = exp((¢(0; -), Mo))-

We expect the value of the Schrodinger problem to coincide with

—|—m1n{//rp 8tp—Ap+rp}

(that is ¥ quadratic and v = 0).
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