Variational Mean Field Games: on estimates on the density and the pressure and their consequences for the Lagrangian point of view

Hugo Lavenant^a

December 13th, 2019

SIAM conference on PDE. La Quinta, California, USA

^aDepartment of Mathematics, University of British Columbia

 $\min_{\rho, \mathsf{v}} \bigg|$

where $\rho: [0, T] \to \mathcal{P}(\Omega)$ and $v: [0, T] \times \Omega \to \mathbb{R}^d$ while

 $\partial_t \rho + \nabla \cdot (\rho \mathbf{V}) = 0.$

¹Benamou, Carlier and Santambrogio, Variational Mean Field Games (2016).

Variational Mean Field Games of first order 1

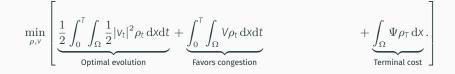
$$\min_{\rho, \mathsf{V}} \left[\underbrace{\frac{1}{2} \int_0^{\mathsf{T}} \int_{\Omega} \frac{1}{2} |\mathsf{V}_t|^2 \rho_t \, \mathrm{d}x \mathrm{d}t}_{\mathsf{Optimal evolution}} \right]$$

where $\rho: [0, T] \to \mathcal{P}(\Omega)$ and $v: [0, T] \times \Omega \to \mathbb{R}^d$ while

$$\partial_{t}\rho + \nabla \cdot (\rho v) = 0.$$

¹Benamou, Carlier and Santambrogio, Variational Mean Field Games (2016).

Variational Mean Field Games of first order 1



where $\rho: [0, T] \to \mathcal{P}(\Omega)$ and $v: [0, T] \times \Omega \to \mathbb{R}^d$ while

 $\partial_{t}\rho + \nabla \cdot (\rho v) = 0.$

¹Benamou, Carlier and Santambrogio, Variational Mean Field Games (2016).

Variational Mean Field Games of first order ¹

where $\rho: [0, T] \to \mathcal{P}(\Omega)$ and $v: [0, T] \times \Omega \to \mathbb{R}^d$ while

 $\partial_{\mathbf{t}}\rho + \nabla \cdot (\rho \mathbf{V}) = 0.$

¹Benamou, Carlier and Santambrogio, Variational Mean Field Games (2016).

Variational Mean Field Games of first order ¹

where $\rho: [0, T] \to \mathcal{P}(\Omega)$ and $v: [0, T] \times \Omega \to \mathbb{R}^d$ while

 $\partial_t \rho + \nabla \cdot (\rho \mathsf{V}) = 0.$

The initial density ρ_0 is given, $V, \Psi : \Omega \to \mathbb{R}$ are potentials.

The function $F : \mathcal{P}(\Omega) \to \mathbb{R}$ is convex. Two cases:

 $F(\rho) = \begin{cases} \int_{\Omega} f(\rho) dx & \text{"soft congestion",} \\ 0 \text{ if } \rho \leqslant 1, +\infty \text{ otherwise "hard congestion".} \end{cases}$

¹Benamou, Carlier and Santambrogio, Variational Mean Field Games (2016).

If ρ is a minimizer of the problem, there exists $Q \in \mathcal{P}(C([0, T], \Omega))$ such that $Q(\gamma)d\gamma$ represents the proportion of agents following the strategy γ .

If ρ is a minimizer of the problem, there exists $Q \in \mathcal{P}(C([0, T], \Omega))$ such that $Q(\gamma) d\gamma$ represents the proportion of agents following the strategy γ .

Denote $e_t : C([0, T], \Omega) \to \Omega$ the evaluation at time *t*:

• for all t, $e_t # Q = \rho_t$,

If ρ is a minimizer of the problem, there exists $Q \in \mathcal{P}(C([0, T], \Omega))$ such that $Q(\gamma) d\gamma$ represents the proportion of agents following the strategy γ .

Denote $e_t : C([0, T], \Omega) \rightarrow \Omega$ the evaluation at time *t*:

- for all t, $e_t # Q = \rho_t$,
- Q-a.e. curve γ solves the control problem

$$\min_{\boldsymbol{\omega} \text{ s.t. } \boldsymbol{\omega}(0)=\gamma(0)} \left[\int_0^T \left(\frac{1}{2} |\dot{\boldsymbol{\omega}}_t|^2 + V(\boldsymbol{\omega}_t) + p_t(\boldsymbol{\omega}_t) \right) \mathrm{d}t + \Psi(\boldsymbol{\omega}_T) \right].$$

If ρ is a minimizer of the problem, there exists $Q \in \mathcal{P}(C([0, T], \Omega))$ such that $Q(\gamma)d\gamma$ represents the proportion of agents following the strategy γ .

Denote $e_t : C([0, T], \Omega) \rightarrow \Omega$ the evaluation at time *t*:

- for all t, $e_t # Q = \rho_t$,
- Q-a.e. curve γ solves the control problem

$$\min_{\substack{\omega \text{ s.t. } \omega(0) = \gamma(0)}} \left[\int_0^T \left(\frac{1}{2} |\dot{\omega}_t|^2 + V(\omega_t) + p_t(\omega_t) \right) \mathrm{d}t + \Psi(\omega_t) \right].$$

The field $p:[0,T] \times \Omega \rightarrow \mathbb{R}$ is the price or the pressure.

 $p_t(x) \qquad \begin{cases} = f'(\rho_t(x)) & \text{(Soft congestion)} \\ \ge 0 \text{ and } = 0 \text{ if } \rho_t(x) < 1 & \text{(Hard congestion)} \end{cases}$

Mean Field Games of first order with local couplings:

- Each agent tries to minimize $\boldsymbol{\Psi}$ at the final time but try to avoid the others.

Mean Field Games of first order with local couplings:

- Each agent tries to minimize $\boldsymbol{\Psi}$ at the final time but try to avoid the others.
- The effect of the other agents is only felt by their mean field effect through the price p.

Mean Field Games of first order with local couplings:

- Each agent tries to minimize Ψ at the final time but try to avoid the others.
- The effect of the other agents is only felt by their mean field effect through the price *p*.
- Quadratic (because on the square on the velocity), first order (no noise) and potential (comes from the minimization of a functional).

Mean Field Games: Eulerian interpretation

Value function for a single agent:

$$\varphi(t,x) := \min_{\omega \text{ s.t. } \omega(t) = x} \left[\int_t^T \left(\frac{1}{2} |\dot{\omega}_t|^2 + V(\omega_t) + p_t(\omega_t) \right) \mathrm{d}t + \Psi(\omega_T) \right].$$

Mean Field Games: Eulerian interpretation

Value function for a single agent:

$$\varphi(t,x) := \min_{\omega \text{ s.t. } \omega(t) = x} \left[\int_t^T \left(\frac{1}{2} |\dot{\omega}_t|^2 + V(\omega_t) + \rho_t(\omega_t) \right) \mathrm{d}t + \Psi(\omega_T) \right]$$

It solves a Hamilton-Jacobi equation. The optimal control is $\dot{\gamma}(t) = -\nabla \varphi(t, \gamma(t)) = v(t, \gamma(t)).$

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathsf{V}) &= 0, \\ \rho_0 & \text{given}, \\ -\partial_t \varphi + \frac{1}{2} |\nabla \varphi|^2 &= \mathsf{V} + \rho, \\ \varphi(\mathsf{T}, \cdot) &= \Psi, \\ \mathsf{V} &= -\nabla \varphi. \end{cases}$$

Abstract idea of Mean Field Games

Abstract idea of Mean Field Games

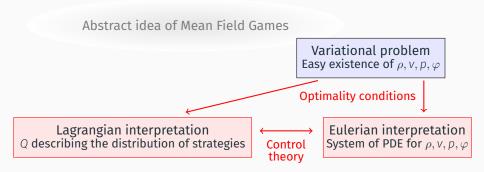
Variational problem Easy existence of ρ, v, p, φ

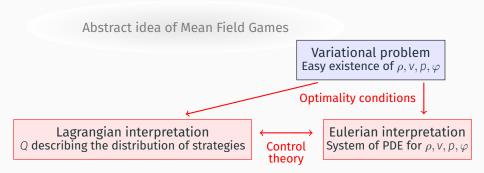
Abstract idea of Mean Field Games

Variational problem Easy existence of ρ , v, p, φ

Lagrangian interpretation Q describing the distribution of strategies

Eulerian interpretation System of PDE for ρ , v, p, φ





Questions

What regularity can be deduced on ρ on p from the variational formulation?

Does it justify the Lagrangian and Eulerian systems?

$$\min_{\rho, \mathbf{v}} \left[\frac{1}{2} \int_0^{\mathsf{T}} \int_{\Omega} \frac{1}{2} |\mathbf{v}_t|^2 \rho_t \, \mathrm{d} \mathbf{x} \mathrm{d} t + \int_0^{\mathsf{T}} \int_{\Omega} \mathsf{V} \rho_t \, \mathrm{d} \mathbf{x} \mathrm{d} t + \int_0^{\mathsf{T}} \int_{\Omega} f(\rho_t) \, \mathrm{d} \mathbf{x} \mathrm{d} t + \int_{\Omega} \Psi \rho_{\mathsf{T}} \, \mathrm{d} \mathbf{x} \mathrm{d} t$$
with $\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0$.

²L. and Santambrogio, Optimal density evolution with congestion: L^{∞} bounds via flow interchange techniques and applications to variational Mean Field Games (2018).

$$\min_{\boldsymbol{\rho}, \mathbf{v}} \left[\frac{1}{2} \int_0^T \int_{\Omega} \frac{1}{2} |\mathbf{v}_t|^2 \rho_t \, \mathrm{d}\mathbf{x} \mathrm{d}t + \int_0^T \int_{\Omega} \mathbf{V} \rho_t \, \mathrm{d}\mathbf{x} \mathrm{d}t + \int_0^T \int_{\Omega} f(\rho_t) \, \mathrm{d}\mathbf{x} \mathrm{d}t + \int_{\Omega} \Psi \rho_T \, \mathrm{d}\mathbf{x} \mathrm{d}t \right]$$

with $\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0$.

Theorem

Assume V is Lipschitz, $\Psi \in C^{1,1}$ and $f''(s) \ge s^{\alpha}$ with $\alpha \ge -1$. Then, for every t < T, the measure ρ belongs to $L^{\infty}([t,T] \times \Omega)$.

²L. and Santambrogio, Optimal density evolution with congestion: L^{∞} bounds via flow interchange techniques and applications to variational Mean Field Games (2018).

$$\min_{\boldsymbol{\rho}, \mathbf{v}} \left[\frac{1}{2} \int_0^T \int_{\Omega} \frac{1}{2} |\mathbf{v}_t|^2 \rho_t \, \mathrm{d}\mathbf{x} \mathrm{d}t + \int_0^T \int_{\Omega} \mathbf{V} \rho_t \, \mathrm{d}\mathbf{x} \mathrm{d}t + \int_0^T \int_{\Omega} f(\rho_t) \, \mathrm{d}\mathbf{x} \mathrm{d}t + \int_{\Omega} \Psi \rho_T \, \mathrm{d}\mathbf{x} \mathrm{d}t \right]$$

with $\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0$.

Theorem

Assume V is Lipschitz, $\Psi \in C^{1,1}$ and $f''(s) \ge s^{\alpha}$ with $\alpha \ge -1$. Then, for every t < T, the measure ρ belongs to $L^{\infty}([t,T] \times \Omega)$.

Corollary

Under the assumption of the previous theorem, if f' is bounded from below then $p = f'(\rho)$ belongs to $L^{\infty}([t, T] \times \Omega)$.

²L. and Santambrogio, Optimal density evolution with congestion: L^{∞} bounds via flow interchange techniques and applications to variational Mean Field Games (2018).

 $\int_\Omega \rho^m$

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \int_{\Omega} \rho^m$$

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \int_{\Omega} \rho^m \ge m(m-1) \int_{\Omega} |\nabla \rho|^2 \rho^{m-2} f''(\rho) + [\text{Low order}]$$

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \int_{\Omega} \rho^m &\ge m(m-1) \int_{\Omega} |\nabla \rho|^2 \rho^{m-2} f^{\prime\prime}(\rho) + [\text{Low order}] \\ &\sim \mathcal{C}(m) \int_{\Omega} \left| \nabla \left(\rho^{(m+1+\alpha)/2} \right) \right|^2 \end{split}$$

If m > 1, with $\beta > 1$ such that $H^1(\Omega) \hookrightarrow L^{2\beta}(\Omega)$,

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \int_{\Omega} \rho^m &\geq m(m-1) \int_{\Omega} |\nabla \rho|^2 \rho^{m-2} f^{\prime\prime}(\rho) + [\mathsf{Low order}] \\ &\sim C(m) \int_{\Omega} \left| \nabla \left(\rho^{(m+1+\alpha)/2} \right) \right|^2 \\ &\geq C(m) \left(\int_{\Omega} \rho^{\beta(m+1+\alpha)} \right)^{1/\beta}. \end{split}$$

If m > 1, with $\beta > 1$ such that $H^1(\Omega) \hookrightarrow L^{2\beta}(\Omega)$,

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \int_{\Omega} \rho^m &\geq m(m-1) \int_{\Omega} |\nabla \rho|^2 \rho^{m-2} f^{\prime\prime}(\rho) + [\mathsf{Low order}] \\ &\sim \mathcal{C}(m) \int_{\Omega} \left| \nabla \left(\rho^{(m+1+\alpha)/2} \right) \right|^2 \\ &\geq \mathcal{C}(m) \left(\int_{\Omega} \rho^{\beta(m+1+\alpha)} \right)^{1/\beta}. \end{split}$$

Integration with respect to time and Moser iterations.

$$\min_{\rho, \mathsf{v}} \left[\frac{1}{2} \int_0^{\mathsf{T}} \int_{\Omega} \frac{1}{2} |\mathsf{v}_t|^2 \rho_t \, \mathrm{d}x \mathrm{d}t + \int_0^{\mathsf{T}} \int_{\Omega} \mathsf{V} \rho_t \, \mathrm{d}x \mathrm{d}t + \int_{\Omega} \Psi \rho_{\mathsf{T}} \, \mathrm{d}x. \right]$$

with $\partial_t \rho + \nabla \cdot (\rho v) = 0$ and the constraint $\rho \leq 1$.

³L. and Santambrogio, New estimates on the regularity of the pressure in density-constrained Mean Field Games (2019).

$$\min_{\rho, \mathsf{V}} \left[\frac{1}{2} \int_0^{\mathsf{T}} \int_{\Omega} \frac{1}{2} |\mathsf{V}_t|^2 \rho_t \, \mathrm{d}x \mathrm{d}t + \int_0^{\mathsf{T}} \int_{\Omega} \mathsf{V} \rho_t \, \mathrm{d}x \mathrm{d}t + \int_{\Omega} \Psi \rho_{\mathsf{T}} \, \mathrm{d}x. \right]$$

with $\partial_t \rho + \nabla \cdot (\rho v) = 0$ and the constraint $\rho \leqslant 1$.

d is the dimension of the ambient space.

Theorem

Assume $\nabla V \in L^q$ with q > d. Then p belongs to $L^{\infty}([0,T) \times \Omega)$ with a norm depending only on $\|\nabla V\|_{L^q}$ and Ω .

³L. and Santambrogio, New estimates on the regularity of the pressure in density-constrained Mean Field Games (2019).

$$\min_{\rho, \forall} \left[\frac{1}{2} \int_0^T \int_\Omega \frac{1}{2} |\mathsf{v}_t|^2 \rho_t \, \mathrm{d}x \mathrm{d}t + \int_0^T \int_\Omega \mathsf{V} \rho_t \, \mathrm{d}x \mathrm{d}t + \int_\Omega \Psi \rho_T \, \mathrm{d}x. \right]$$

with $\partial_t \rho + \nabla \cdot (\rho v) = 0$ and the constraint $\rho \leqslant 1$.

d is the dimension of the ambient space.

Theorem

Assume $\nabla V \in L^q$ with q > d. Then p belongs to $L^{\infty}([0,T) \times \Omega)$ with a norm depending only on $\|\nabla V\|_{L^q}$ and Ω .

The proof relies on an inequality

$$\Delta(p+V) \ge -D_{tt} \ln \rho \underset{\text{on } \{p>0\}}{\ge} 0.$$

³L. and Santambrogio, New estimates on the regularity of the pressure in density-constrained Mean Field Games (2019).

Previous results on the regularity of φ solving:

$$-\partial_t \varphi + \frac{1}{2} |\nabla \varphi|^2 = g, \ g \in L^{\infty}$$

⁴Cardaliaguet and Silvestre, Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side (2012). ⁵Cardaliaguet, Porretta, and Tonon, Sobolev regularity for the first order Hamilton–Jacobi equation (2015).

Previous results on the regularity of φ solving:

$$-\partial_t \varphi + \frac{1}{2} |\nabla \varphi|^2 = g, \ g \in L^{\infty}$$

- + φ is Hölder-continuous on $(0, \mathbf{T}) \times \Omega$,
- $\partial_t \varphi \in L^{1+\varepsilon}$ and $\nabla \varphi \in L^{2+\varepsilon}$,
- The Hamilton-Jacobi equation is satisfied in the almost everywhere sense.

⁴Cardaliaguet and Silvestre, Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side (2012). ⁵Cardaliaguet, Porretta, and Tonon, Sobolev regularity for the first order Hamilton–Jacobi equation (2015).

Consequence: Lagrangian point of view ⁶⁷

Case of soft congestion with a pressure in $L^{\infty}((0,T] \times \Omega)$.

⁶Ambrosio and Figalli, Geodesics in the space of measure-preserving maps and plans (2009). ⁷Cardaliaguet, Mészáros, and Santambrogio, First order mean field games with density constraints: pressure equals price (2016).

Case of soft congestion with a pressure in $L^{\infty}((0,T] \times \Omega)$. Pointwise representative of the pressure:

$$\hat{p}_t(x) = \limsup_{\varepsilon \to 0} \oint_{B(x,\varepsilon)} p_t(y) \mathrm{d}y.$$

⁶Ambrosio and Figalli, Geodesics in the space of measure-preserving maps and plans (2009). ⁷Cardaliaguet, Mészáros, and Santambrogio, First order mean field games with density constraints: pressure equals price (2016).

Case of soft congestion with a pressure in $L^{\infty}((0,T] \times \Omega)$. Pointwise representative of the pressure:

$$\hat{p}_t(x) = \limsup_{\varepsilon \to 0} \oint_{B(x,\varepsilon)} p_t(y) \mathrm{d}y.$$

There exists $Q \in \mathcal{P}(\mathcal{C}([0, T], \Omega))$ such that

- for all t, $e_t # Q = \rho_t$,
- for Q-a.e. curve γ , for all t > 0, γ is a minimizer of

$$\min_{\boldsymbol{\omega} \text{ s.t. } \boldsymbol{\omega}(t) = \gamma(t)} \left[\int_t^T \left(\frac{1}{2} |\dot{\boldsymbol{\omega}}_{\mathsf{S}}|^2 + \mathsf{V}(\boldsymbol{\omega}_{\mathsf{S}}) + \hat{\boldsymbol{p}}_{\mathsf{S}}(\boldsymbol{\omega}_{\mathsf{S}}) \right) \mathrm{d} \mathsf{S} + \Psi(\boldsymbol{\omega}_{\mathsf{T}}) \right]$$

⁶Ambrosio and Figalli, Geodesics in the space of measure-preserving maps and plans (2009). ⁷Cardaliaguet, Mészáros, and Santambrogio, First order mean field games with density constraints: pressure equals price (2016).

The Eulerian value function φ is in fact a Lagrangian value function. For t > 0, for ρ_t a.e. x,

$$\varphi(t, \mathbf{X}) = \min_{\boldsymbol{\omega} \text{ s.t. } \boldsymbol{\omega}(t) = \mathbf{X}} \left[\int_{t}^{T} \left(\frac{1}{2} |\dot{\boldsymbol{\omega}}_{\mathsf{S}}|^{2} + V(\boldsymbol{\omega}_{\mathsf{S}}) + \hat{p}_{\mathsf{S}}(\boldsymbol{\omega}_{\mathsf{S}}) \right) \mathrm{d}\mathbf{S} + \Psi(\boldsymbol{\omega}_{\mathsf{T}}) \right]$$

The Eulerian value function φ is in fact a Lagrangian value function. For t > 0, for ρ_t a.e. x,

$$\varphi(t, x) = \underbrace{\min_{\substack{\omega \text{ s.t. }}\omega(t) = x} \left[\int_{t}^{T} \left(\frac{1}{2} |\dot{\omega}_{s}|^{2} + V(\omega_{s}) + \hat{p}_{s}(\omega_{s}) \right) ds + \Psi(\omega_{T}) \right]}_{:= \tilde{\varphi}(t, x)}.$$

The Eulerian value function φ is in fact a Lagrangian value function. For t > 0, for ρ_t a.e. x,

$$\varphi(t,x) = \underbrace{\min_{\boldsymbol{\omega} \text{ s.t. } \boldsymbol{\omega}(t)=x} \left[\int_{t}^{T} \left(\frac{1}{2} |\dot{\boldsymbol{\omega}}_{s}|^{2} + V(\boldsymbol{\omega}_{s}) + \hat{p}_{s}(\boldsymbol{\omega}_{s}) \right) \mathrm{d}s + \Psi(\boldsymbol{\omega}_{T}) \right]}_{:=\tilde{\varphi}(t,x)}.$$

- The inequality $\varphi \leqslant \tilde{\varphi}$ part follows by a smoothing argument of the pressure.

The Eulerian value function φ is in fact a Lagrangian value function. For t > 0, for ρ_t a.e. x,

$$\varphi(t,x) = \underbrace{\min_{\boldsymbol{\omega} \text{ s.t. } \boldsymbol{\omega}(t)=x} \left[\int_{t}^{T} \left(\frac{1}{2} |\dot{\boldsymbol{\omega}}_{\mathsf{S}}|^{2} + V(\boldsymbol{\omega}_{\mathsf{S}}) + \hat{p}_{\mathsf{S}}(\boldsymbol{\omega}_{\mathsf{S}}) \right) \mathrm{d}\boldsymbol{S} + \Psi(\boldsymbol{\omega}_{\mathsf{T}}) \right]}_{:=\tilde{\varphi}(t,x)}.$$

- The inequality $\varphi\leqslant\tilde{\varphi}$ part follows by a smoothing argument of the pressure.
- On the other hand for Q-a.e. γ ,

$$\tilde{\varphi}(t,\gamma(t)) = \int_t^T \left(\frac{1}{2}|\dot{\gamma}_{\mathsf{S}}|^2 + V(\gamma) + \hat{p}_{\mathsf{S}}(\gamma)\right) \mathrm{d}\mathsf{S} + \Psi(\gamma_{\mathsf{T}}).$$

The Eulerian value function φ is in fact a Lagrangian value function. For t > 0, for ρ_t a.e. x,

$$\varphi(t,x) = \underbrace{\min_{\boldsymbol{\omega} \text{ s.t. } \boldsymbol{\omega}(t)=x} \left[\int_{t}^{T} \left(\frac{1}{2} |\dot{\boldsymbol{\omega}}_{\mathsf{S}}|^{2} + V(\boldsymbol{\omega}_{\mathsf{S}}) + \hat{p}_{\mathsf{S}}(\boldsymbol{\omega}_{\mathsf{S}}) \right) \mathrm{d}\boldsymbol{S} + \Psi(\boldsymbol{\omega}_{\mathsf{T}}) \right]}_{:=\tilde{\varphi}(t,x)}.$$

- The inequality $\varphi\leqslant\tilde{\varphi}$ part follows by a smoothing argument of the pressure.
- On the other hand for Q-a.e. γ ,

$$\tilde{\varphi}(t,\gamma(t)) = \int_t^T \left(\frac{1}{2}|\dot{\gamma}_{\mathsf{S}}|^2 + \mathsf{V}(\gamma) + \hat{p}_{\mathsf{S}}(\gamma)\right) \mathrm{d}\mathsf{S} + \Psi(\gamma_{\mathsf{T}}).$$

• Integrating w.r.t. Q gives

$$\int_{\Omega} \tilde{\varphi} \rho_t \leqslant \frac{1}{2} \int_t^T \int_{\Omega} \frac{1}{2} |\mathbf{v}|^2 \rho + \int_0^T \int_{\Omega} \mathbf{V} \rho + \int_0^T \int_{\Omega} \rho \hat{\rho} + \int_{\Omega} \Psi \rho_T \hat{\rho} d\rho + \int_{\Omega} \Psi \rho_T \hat{\rho} + \int_{\Omega} \Psi \rho_T \hat{\rho} d\rho + \int_{\Omega} \Psi \rho_T \hat{\rho} + \int_{\Omega} \Psi \hat{\rho} + \int_{\Omega}$$

The Eulerian value function φ is in fact a Lagrangian value function. For t > 0, for ρ_t a.e. x,

$$\varphi(t,x) = \underbrace{\min_{\boldsymbol{\omega} \text{ s.t. } \boldsymbol{\omega}(t)=x} \left[\int_{t}^{T} \left(\frac{1}{2} |\dot{\boldsymbol{\omega}}_{\mathsf{S}}|^{2} + V(\boldsymbol{\omega}_{\mathsf{S}}) + \hat{p}_{\mathsf{S}}(\boldsymbol{\omega}_{\mathsf{S}}) \right) \mathrm{d}\boldsymbol{S} + \Psi(\boldsymbol{\omega}_{\mathsf{T}}) \right]}_{:=\tilde{\varphi}(t,x)}.$$

- The inequality $\varphi\leqslant\tilde{\varphi}$ part follows by a smoothing argument of the pressure.
- On the other hand for Q-a.e. γ ,

$$\tilde{\varphi}(t,\gamma(t)) = \int_{t}^{T} \left(\frac{1}{2}|\dot{\gamma}_{\mathsf{S}}|^{2} + \mathsf{V}(\gamma) + \hat{p}_{\mathsf{S}}(\gamma)\right) \mathrm{d}\mathsf{S} + \Psi(\gamma_{\mathsf{T}}).$$

• Integrating w.r.t. Q gives

$$\int_{\Omega} \tilde{\varphi} \rho_t \leqslant \frac{1}{2} \int_t^{\mathsf{T}} \int_{\Omega} \frac{1}{2} |\mathsf{V}|^2 \rho + \int_0^{\mathsf{T}} \int_{\Omega} \mathsf{V} \rho + \int_0^{\mathsf{T}} \int_{\Omega} \rho \hat{\rho} + \int_{\Omega} \Psi \rho_{\mathsf{T}} \underbrace{=}_{\mathsf{by optimality}} \int_{\Omega} \varphi \rho_t.$$

Thank you for your attention