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Variational Mean Field Games of first order 1

min
ρ,v



1

2

ˆ T

0

ˆ
Ω

1

2
|vt|2ρt dxdt︸ ︷︷ ︸

Optimal evolution

+

ˆ T

0

ˆ
Ω

Vρt dxdt︸ ︷︷ ︸
Favors congestion

+

ˆ T

0

F(ρt) dt︸ ︷︷ ︸
Penalizes congestion

+

ˆ
Ω

ΨρT dx︸ ︷︷ ︸
Terminal cost

.



where ρ : [0, T] → P(Ω) and v : [0, T]× Ω → Rd while

∂tρ+∇ · (ρv) = 0.

The initial density ρ0 is given, V,Ψ : Ω → R are potentials.

The function F : P(Ω) → R is convex. Two cases:

F(ρ) =


ˆ
Ω

f(ρ)dx ”soǒt congestion”,

0 if ρ 6 1, +∞ otherwise ”hard congestion”.

1Benamou, Carlier and Santambrogio, Variational Mean Field Games (2016).
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Mean Field Games: Lagrangian interpretation

If ρ is a minimizer of the problem, there exists Q ∈ P(C([0, T],Ω)) such that
Q(γ)dγ represents the proportion of agents following the strategy γ.

Denote et : C([0, T],Ω) → Ω the evaluation at time t:

• for all t, et#Q = ρt,
• Q-a.e. curve γ solves the control problem

min
ω s.t. ω(0)=γ(0)

[ˆ T

0

(
1

2
|ω̇t|2 + V(ωt) + pt(ωt)

)
dt+Ψ(ωT)

]
.

The field p : [0, T]× Ω → R is the price or the pressure.

pt(x)
{
= f′(ρt(x)) (Soǒt congestion)
> 0 and = 0 if ρt(x) < 1 (Hard congestion)
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Mean Field Games

Mean Field Games of first order with local couplings:

• Each agent tries to minimize Ψ at the final time but try to avoid the
others.

• The effect of the other agents is only felt by their mean field effect
through the price p.

• Quadratic (because on the square on the velocity), first order (no noise)
and potential (comes from the minimization of a functional).
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Mean Field Games: Eulerian interpretation

Value function for a single agent:

ϕ(t, x) := min
ω s.t. ω(t)=x

[ˆ T

t

(
1

2
|ω̇t|2 + V(ωt) + pt(ωt)

)
dt+Ψ(ωT)

]
.

It solves a Hamilton-Jacobi equation. The optimal control is
γ̇(t) = −∇ϕ(t, γ(t)) = v(t, γ(t)).



∂tρ+∇ · (ρv) = 0,

ρ0 given,
−∂tϕ+

1

2
|∇ϕ|2 = V+ p,

ϕ(T, ·) = Ψ,

v = −∇ϕ.
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Regularity issues

Abstract idea of Mean Field Games

Variational problem
Easy existence of ρ, v, p, φ

Optimality conditions

Lagrangian interpretation
Q describing the distribution of strategies

Eulerian interpretation
System of PDE for ρ, v,p, φControl

theory

Questions
What regularity can be deduced on ρ on p from the variational
formulation?

Does it justify the Lagrangian and Eulerian systems?



Regularity issues

Abstract idea of Mean Field Games

Variational problem
Easy existence of ρ, v, p, φ

Optimality conditions

Lagrangian interpretation
Q describing the distribution of strategies

Eulerian interpretation
System of PDE for ρ, v,p, φControl

theory

Questions
What regularity can be deduced on ρ on p from the variational
formulation?

Does it justify the Lagrangian and Eulerian systems?



Regularity issues

Abstract idea of Mean Field Games

Variational problem
Easy existence of ρ, v, p, φ

Optimality conditions

Lagrangian interpretation
Q describing the distribution of strategies

Eulerian interpretation
System of PDE for ρ, v,p, φ

Control
theory

Questions
What regularity can be deduced on ρ on p from the variational
formulation?

Does it justify the Lagrangian and Eulerian systems?



Regularity issues

Abstract idea of Mean Field Games

Variational problem
Easy existence of ρ, v, p, φ

Optimality conditions

Lagrangian interpretation
Q describing the distribution of strategies

Eulerian interpretation
System of PDE for ρ, v,p, φControl

theory

Questions
What regularity can be deduced on ρ on p from the variational
formulation?

Does it justify the Lagrangian and Eulerian systems?



Regularity issues

Abstract idea of Mean Field Games

Variational problem
Easy existence of ρ, v, p, φ

Optimality conditions

Lagrangian interpretation
Q describing the distribution of strategies

Eulerian interpretation
System of PDE for ρ, v,p, φControl

theory

Questions
What regularity can be deduced on ρ on p from the variational
formulation?

Does it justify the Lagrangian and Eulerian systems?



Regularity of ρ: soǒt congestion 2

min
ρ,v

[
1

2

ˆ T

0

ˆ
Ω

1

2
|vt|2ρt dxdt+

ˆ T

0

ˆ
Ω

Vρt dxdt+
ˆ T

0

ˆ
Ω

f(ρt) dxdt+
ˆ
Ω

ΨρT dx.
]

with ∂tρ+∇ · (ρv) = 0.

Theorem
Assume V is Lipschitz, Ψ ∈ C1,1 and f′′(s) > sα with α > −1. Then, for every
t < T, the measure ρ belongs to L∞([t, T]× Ω).

Corollary
Under the assumption of the previous theorem, if f′ is bounded from below
then p = f′(ρ) belongs to L∞([t, T]× Ω).

2L. and Santambrogio, Optimal density evolution with congestion: L∞ bounds via flow
interchange techniques and applications to variational Mean Field Games (2018).
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Idea of the proof

If m > 1,

with β > 1 such that H1(Ω) ↪→ L2β(Ω),

d2

dt2

ˆ
Ω

ρm

> m(m− 1)

ˆ
Ω

|∇ρ|2ρm−2f ′′(ρ) + [Low order]

∼ C(m)

ˆ
Ω

∣∣∣∇(
ρ(m+1+α)/2

)∣∣∣2
> C(m)

(ˆ
Ω

ρβ(m+1+α)

)1/β

.

Integration with respect to time and Moser iterations.
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Regularity of ρ: hard congestion 3

min
ρ,v

[
1

2

ˆ T

0

ˆ
Ω

1

2
|vt|2ρt dxdt+

ˆ T

0

ˆ
Ω

Vρt dxdt+
ˆ
Ω

ΨρT dx.
]

with ∂tρ+∇ · (ρv) = 0 and the constraint ρ 6 1.

d is the dimension of the ambient space.

Theorem
Assume ∇V ∈ Lq with q > d. Then p belongs to L∞([0, T)× Ω) with a norm
depending only on ∥∇V∥Lq and Ω.

The proof relies on an inequality

∆(p+ V) > −Dtt ln ρ >︸︷︷︸
on {p>0}

0.

3L. and Santambrogio, New estimates on the regularity of the pressure in density-constrained
Mean Field Games (2019).
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Consequences: regularity of the value function 4 5

Previous results on the regularity of ϕ solving:

−∂tϕ+
1

2
|∇ϕ|2 = g, g ∈ L∞

• ϕ is Hölder-continuous on (0, T)× Ω,
• ∂tϕ ∈ L1+ε and ∇ϕ ∈ L2+ε,
• The Hamilton-Jacobi equation is satisfied in the almost everywhere
sense.

4Cardaliaguet and Silvestre, Hölder continuity to Hamilton-Jacobi equations with
superquadratic growth in the gradient and unbounded right-hand side (2012).
5Cardaliaguet, Porretta, and Tonon, Sobolev regularity for the first order Hamilton–Jacobi
equation (2015).
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Consequence: Lagrangian point of view 6 7

Case of soǒt congestion with a pressure in L∞((0, T]× Ω).

Pointwise
representative of the pressure:

p̂t(x) = lim sup
ε→0

 
B(x,ε)

pt(y)dy.

There exists Q ∈ P(C([0, T],Ω)) such that

• for all t, et#Q = ρt,
• for Q-a.e. curve γ, for all t > 0, γ is a minimizer of

min
ω s.t. ω(t)=γ(t)

[ˆ T

t

(
1

2
|ω̇s|2 + V(ωs) + p̂s(ωs)

)
ds+Ψ(ωT)

]
.

6Ambrosio and Figalli, Geodesics in the space of measure-preserving maps and plans (2009).
7Cardaliaguet, Mészáros, and Santambrogio, First order mean field games with density
constraints: pressure equals price (2016).
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representative of the pressure:

p̂t(x) = lim sup
ε→0

 
B(x,ε)

pt(y)dy.

There exists Q ∈ P(C([0, T],Ω)) such that

• for all t, et#Q = ρt,
• for Q-a.e. curve γ, for all t > 0, γ is a minimizer of

min
ω s.t. ω(t)=γ(t)

[ˆ T

t

(
1

2
|ω̇s|2 + V(ωs) + p̂s(ωs)

)
ds+Ψ(ωT)

]
.

6Ambrosio and Figalli, Geodesics in the space of measure-preserving maps and plans (2009).
7Cardaliaguet, Mészáros, and Santambrogio, First order mean field games with density
constraints: pressure equals price (2016).



Link between Eulerian and Lagrangian point of view

The Eulerian value function ϕ is in fact a Lagrangian value function. For
t > 0, for ρt a.e. x,

ϕ(t, x) = min
ω s.t. ω(t)=x

[ˆ T

t

(
1

2
|ω̇s|2 + V(ωs) + p̂s(ωs)

)
ds+Ψ(ωT)

]

︸ ︷︷ ︸
:=φ̃(t,x)

.

• The inequality ϕ 6 ϕ̃ part follows by a smoothing argument of the
pressure.

• On the other hand for Q-a.e. γ,

ϕ̃(t, γ(t)) =
ˆ T

t

(
1

2
|γ̇s|2 + V(γ) + p̂s(γ)

)
ds+Ψ(γT).

• Integrating w.r.t. Q givesˆ
Ω

ϕ̃ρt 6
1

2

ˆ T

t

ˆ
Ω

1

2
|v|2ρ+

ˆ T

0

ˆ
Ω

Vρ+
ˆ T

0

ˆ
Ω

ρp̂+
ˆ
Ω

ΨρT =︸︷︷︸
by optimality

ˆ
Ω

ϕρt.
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