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1. Dynamical Optimal transport

2. Discretization on discrete surfaces (with S. Claici, E. Chien and J. Solomon)1

3. A general framework for convergence2

1H. Lavenant, S. Claici, E. Chien and J. Solomon, Dynamical Optimal Transport on Discrete
Surfaces. Arxiv 1809.07083.
2H. Lavenant, Unconditional convergence for discretizations of dynamical optimal transport.
Arxiv 1909.08790.
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1. Dynamical Optimal transport



Static formulation of optimal transport

(X,g) compact Riemannian manifold possibly with boundary, the geodesic
distance is dg.

Definition
Let µ, ν ∈ P(X) be two probability measures on X. The static optimal
transport problem is

min
π

¨
X×X

dg(x, y)2 π(dx,dy),

where the minimum is taken over all probability measures on X× X whose
marginals are µ and ν.

The minimal value is W2
2(µ, ν) the squared Wasserstein distance between µ

and ν, which metrizes weak convergence on P(X).
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From static to dynamic

µ =
∑
i

aiδxi ,

ν =
∑
j

bjδyj

Solve the Linear Programming prob-
lem

min
π

∑
i,j

πij dg(xi, yj)2

with conservation of mass constraints{∑
j πij = ai,∑
i πij = bj,

To interpolate, for all i, j a mass πij travels at constant speed on the geodesic
between xi and yj.
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Dynamical formulation of optimal transport

Definition
Let µ, ν ∈ P(X) be two probability measures on X. The dynamical optimal
transport problem is

min
ρ,v

ˆ 1

0

ˆ
X
|v(t, x)|2ρ(t, x)dtdx

where the minimum is taken over densities ρ : [0, 1]× X→ R+ and velocity
fields v : [0, 1]× X→ TX such that{

∂tρ+∇ · (ρv) = 0

ρ(0, ·) = µ, ρ(1, ·) = ν.

The two problems are equivalent: the values are the same and one can
construct minimizers from one formulation by the knowledge of minimizers
of the other (Benamou and Brenier, 2000).
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Convex formulation

Change of variables m = ρv the momentum the unknown.

Proper framework ρ ∈ M+([0, 1]× X) and m ∈ M([0, 1]× X, TX).

ˆ 1

0

ˆ
X

1

2
|v(t, x)|2ρ(t, x)dtdx =

¨
[0,1]×X

|m|2

2ρ

= sup
a,b continuous

{
⟨a, ρ⟩+ ⟨b,m⟩ : a+ 1

2
|b|2 6 0 on [0, 1]× X

}
.

The continuity equation becomes linear and is understood in a weak sense.{
∂tρ+∇ · m = 0

ρ(0, ·) = µ, ρ(1, ·) = ν.

Remark
Existence comes from the direct method of calculus of variations.
Uniqueness holds if µ or ν is absolutely continuous with respect to the
volume measure.
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About regularity

Take µ, ν ∈ P(X) and (ρ,m) solution of the optimal transport problem.

Theorem (Smoothness: Caffarelli and others (1990 and later))
Assume X is the torus or a bounded domain of a Euclidean space with
convex boundary.

If µ, ν are smooth and bounded from below by a strictly positive constant,
then ρ and m are smooth.

On a generic Riemannian manifold, smoothness of the data does not imply
smoothness of the interpolation (Ma–Trudinger–Wang, Loeper, Kim, etc.).

8/21



About regularity

Take µ, ν ∈ P(X) and (ρ,m) solution of the optimal transport problem.

Theorem (Smoothness: Caffarelli and others (1990 and later))
Assume X is the torus or a bounded domain of a Euclidean space with
convex boundary.

If µ, ν are smooth and bounded from below by a strictly positive constant,
then ρ and m are smooth.

On a generic Riemannian manifold, smoothness of the data does not imply
smoothness of the interpolation (Ma–Trudinger–Wang, Loeper, Kim, etc.).

8/21



On the absence of lower bounds

Take µ, ν ∈ P(X) and (ρ,m) solution of the optimal transport problem.

Counterexample (Santambrogio and Wang (2016))
Let X be a convex domain of the Euclidean space with smooth boundary.
There exists µ, ν smooth and bounded from below by a strictly positive
constant such that

min
[0,1]×X

ρ = 0.

Counterexample
Let X be the 2-dimensional torus. For every ε > 0, there exists µ, ν smooth
and bounded from below by a strictly positive constant such that

min
[0,1]×X

ρ 6 ε
(

min
X

µ,min
X

ν
)
.
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2. Discretization on discrete
surfaces (with S. Claici, E. Chien
and J. Solomon)a

aH. Lavenant, S. Claici, E. Chien and J. Solomon, Dynamical Optimal Transport on
Discrete Surfaces. Arxiv 1809.07083.



Discrete surfaces

ρ : •, m : �.

Continuity equation: ρ ∈ P1
timeP

1
space and m ∈ P0

timeP
0
space.

Objective functional:

if G is the space-time grid over which m is defined,¨
[0,1]×X

|m|2

2ρ
∼ 1

2

∑
(t,x)∈G

|mt,x|2

[Average of ρ around (t, x)]

vol((t, x)).
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Practical resolution

In the end: finite-dimensional convex constrained optimization problem.

• The dual is a Second Order Cone Program (SOCP).
• Size ∼ N×M (N temporal grid, M number of vertices of the surface).
• Solved with the Alternating Direction Method of Multipliers (ADMM) as
Benamou and Brenier.

Alternatives: proximal splitting (Papadakis et al., 2014), Helmholtz-Hodge
decomposition (Henry et al., 2019).
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Examples

Positivity and mass preservation are automatically enforced
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Not so perfect?
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3. A general framework for
convergencea

aH. Lavenant, Unconditional convergence for discretizations of dynamical optimal
transport. Arxiv 1909.08790.



A generic discretization

Original problem

Unknowns:

ρ : [0, 1]× X→ R+

m : [0, 1]× X→ TX

Objective

min
ρ,m

{¨
[0,1]×X

|m|2

2ρ

}

under the constraints{
∂tρ+∇ · m = 0,

ρ(0, ·) = µ, ρ(1, ·) = ν.

Fully discretized problem

Xσ,Yσ vector spaces (stand forM(X),M(TX)),
Divσ : Yσ → Xσ linear operator,
Aσ : Xσ × Yσ → [0,+∞] convex,
(N+ 1) time steps, τ = 1/N.

Unknowns: P ∈ (Xσ)
N+1, M ∈ (Yσ)

N.
Objective

min
(P,M)

{ N∑
k=1

τAσ
(
Pk−1 + Pk

2
,Mk

)}

under the constraints{
τ−1(Pk − Pk−1) + Divσ(Mk) = 0,

P0,PN given.
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Previous works

τ temporal step size
τ = 0

σ
sp
at
ia
ls
te
p
si
ze

σ = 0 Original problem

Fully discretized
problem

Semi discretized
(Maas et al.)Γ-convergence

(Erbar et al.)

Gromov-Haussdorf
convergence
(Gladbach et al.)

Γ-convergence
for finite difference
under regularity
assumption
(Carrillo et al.)

This talk
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How does the theorem look like?

We assume that X is a smooth Riemannian manifold with a smooth and
convex boundary.
“Reconstruction” operators RAXσ

,RCEXσ
: Xσ → M(X) and RYσ : Yσ → M(TX).

“Sampling” operators SXσ
: M(X) → Xσ and SYσ

: D(SYσ
) ⊂ M(TX) → Yσ .

Rough formulation
Under compatibility conditions between reconstruction, sampling, Aσ and
Divσ , the solutions of the fully discretized problem, properly
reconstructed, converge weakly in space and time to a solution of the
original problem, when the spatial and temporal grids are refined.
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Applications

Triangulations of surfaces

ρ : •, m : �

Works if:
• Regular meshes.
• C1 convergence to a surface.

Finite volumes (Gladbach et al., 2018)

ρ : •, m : �

Works if:
• Admissible, uniformly regular
meshes.

• Isotropy condition.
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Passing to the limit: reconstruction

To go from the discretized problems to the original one, we need to pass to
the limit:

• the continuity equation in its weak form,
• the objective functional which is lower semi-continuous.
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Passing to the limit: sampling

Hard to sample because of the discontinuity of the cost: we need to
regularize first.

(ρ,m)
µ ν

Heat flow and convolution in time

(ρ̃, m̃)
ρ̃0 ρ̃1

Squezzing

(ρ̂, m̂)

ρ̂T = ρ̃0 ρ̂1−T = ρ̃1
µ ν

Then sampling the regular part: only consistency is required.
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Passing to the limit: controllability

Joining two Dirac masses in one time step with a cost bounded by dg(x, y)2?

δx δy

ρ

|m1| |m2|

With an appropriate choice
of m1,m2,{

∇ · m1 = ρ− δx,

∇ · m2 = ρ− δy,

and
ˆ

|m1|2

ρ+ δx
. dg(x, y)2.
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Extensions

Having a final value not given but penalized (one step of the JKO scheme):
easy adaptation.

Adding a running cost depending on the density (variational Mean Field
Games): more involved because of controllability.
Other cost functions: need for a better understanding of the regularization
of the continuity equation.

The end

21/21



Extensions

Having a final value not given but penalized (one step of the JKO scheme):
easy adaptation.

Adding a running cost depending on the density (variational Mean Field
Games): more involved because of controllability.

Other cost functions: need for a better understanding of the regularization
of the continuity equation.

The end

21/21



Extensions

Having a final value not given but penalized (one step of the JKO scheme):
easy adaptation.

Adding a running cost depending on the density (variational Mean Field
Games): more involved because of controllability.
Other cost functions: need for a better understanding of the regularization
of the continuity equation.

The end

21/21



Extensions

Having a final value not given but penalized (one step of the JKO scheme):
easy adaptation.

Adding a running cost depending on the density (variational Mean Field
Games): more involved because of controllability.
Other cost functions: need for a better understanding of the regularization
of the continuity equation.

The end

21/21


	Dynamical Optimal transport
	Discretization on discrete surfaces (with S. Claici, E. Chien and J. Solomon)H. Lavenant, S. Claici, E. Chien and J. Solomon, Dynamical Optimal Transport on Discrete Surfaces. Arxiv 1809.07083.
	A general framework for convergenceH. Lavenant, Unconditional convergence for discretizations of dynamical optimal transport. Arxiv 1909.08790.

	3.EndRight: 
	3.PlayPauseRight: 
	3.PlayRight: 
	3.PauseRight: 
	3.PlayPauseLeft: 
	3.PlayLeft: 
	3.PauseLeft: 
	3.EndLeft: 
	anm3: 
	3.30: 
	3.29: 
	3.28: 
	3.27: 
	3.26: 
	3.25: 
	3.24: 
	3.23: 
	3.22: 
	3.21: 
	3.20: 
	3.19: 
	3.18: 
	3.17: 
	3.16: 
	3.15: 
	3.14: 
	3.13: 
	3.12: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	2.EndRight: 
	2.PlayPauseRight: 
	2.PlayRight: 
	2.PauseRight: 
	2.PlayPauseLeft: 
	2.PlayLeft: 
	2.PauseLeft: 
	2.EndLeft: 
	anm2: 
	2.62: 
	2.61: 
	2.60: 
	2.59: 
	2.58: 
	2.57: 
	2.56: 
	2.55: 
	2.54: 
	2.53: 
	2.52: 
	2.51: 
	2.50: 
	2.49: 
	2.48: 
	2.47: 
	2.46: 
	2.45: 
	2.44: 
	2.43: 
	2.42: 
	2.41: 
	2.40: 
	2.39: 
	2.38: 
	2.37: 
	2.36: 
	2.35: 
	2.34: 
	2.33: 
	2.32: 
	2.31: 
	2.30: 
	2.29: 
	2.28: 
	2.27: 
	2.26: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	1.EndRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.EndLeft: 
	anm1: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.EndRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.EndLeft: 
	anm0: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


