Dynamical Optimal Transport: discretization and convergence

Hugo Lavenant ${ }^{a}$
October 23rd, 2019
PIMS-AMI seminar. University of Alberta, Edmonton
${ }^{a}$ Department of Mathematics, University of British Columbia

(1) $\triangle \triangle>$

1. Dynamical Optimal transport

2. Discretization on discrete surfaces (with S. Claici, E. Chien and J. Solomon) ${ }^{1}$
3. A general framework for convergence ${ }^{2}$
[^0]1. Dynamical Optimal transport

Static formulation of optimal transport

(X, g) compact Riemannian manifold possibly with boundary, the geodesic distance is d_{g}.

Static formulation of optimal transport

(X, g) compact Riemannian manifold possibly with boundary, the geodesic distance is d_{g}.

Definition

Let $\mu, \nu \in \mathcal{P}(X)$ be two probability measures on X. The static optimal transport problem is

$$
\min _{\pi} \iint_{X \times X} d_{g}(x, y)^{2} \pi(\mathrm{~d} x, \mathrm{~d} y)
$$

where the minimum is taken over all probability measures on $X \times X$ whose marginals are μ and ν.

Static formulation of optimal transport

(X, g) compact Riemannian manifold possibly with boundary, the geodesic distance is d_{g}.

Definition

Let $\mu, \nu \in \mathcal{P}(X)$ be two probability measures on X. The static optimal transport problem is

$$
\min _{\pi} \iint_{X \times X} d_{g}(x, y)^{2} \pi(\mathrm{~d} x, \mathrm{~d} y)
$$

where the minimum is taken over all probability measures on $X \times X$ whose marginals are μ and ν.

The minimal value is $W_{2}^{2}(\mu, \nu)$ the squared Wasserstein distance between μ and ν, which metrizes weak convergence on $\mathcal{P}(X)$.

From static to dynamic

$$
\mu=\sum_{i} a_{i} \delta_{x_{i}}
$$

From static to dynamic

$$
\mu=\sum_{i} a_{i} \delta_{x_{i}}, \nu=\sum_{j} b_{j} \delta_{y_{j}}
$$

From static to dynamic

$$
\mu=\sum_{i} a_{i} \delta_{x_{i}}, \nu=\sum_{j} b_{j} \delta_{y_{j}}
$$

Solve the Linear Programming problem

$$
\min _{\pi} \sum_{i, j} \pi_{i j} d_{g}\left(x_{i}, y_{j}\right)^{2}
$$

with conservation of mass constraints

$$
\left\{\begin{array}{l}
\sum_{j} \pi_{i j}=a_{i}, \\
\sum_{i} \pi_{i j}=b_{j}
\end{array}\right.
$$

From static to dynamic

$$
\mu=\sum_{i} a_{i} \delta_{x_{i}}, \nu=\sum_{j} b_{j} \delta_{y_{j}}
$$

Solve the Linear Programming problem

$$
\min _{\pi} \sum_{i, j} \pi_{i j} d_{g}\left(x_{i}, y_{j}\right)^{2}
$$

with conservation of mass constraints

$$
\left\{\begin{array}{l}
\sum_{j} \pi_{i j}=a_{i} \\
\sum_{i} \pi_{i j}=b_{j}
\end{array}\right.
$$

To interpolate, for all i, j a mass $\pi_{i j}$ travels at constant speed on the geodesic between x_{i} and y_{j}.

From static to dynamic

$$
\mu=\sum_{i} a_{i} \delta_{x_{i}}, \nu=\sum_{j} b_{j} \delta_{y_{j}}
$$

Solve the Linear Programming problem

$$
\min _{\pi} \sum_{i, j} \pi_{i j} d_{g}\left(x_{i}, y_{j}\right)^{2}
$$

with conservation of mass constraints

$$
\left\{\begin{array}{l}
\sum_{j} \pi_{i j}=a_{i} \\
\sum_{i} \pi_{i j}=b_{j}
\end{array}\right.
$$

To interpolate, for all i, j a mass $\pi_{i j}$ travels at constant speed on the geodesic between x_{i} and y_{j}.

From static to dynamic

$$
\mu=\sum_{i} a_{i} \delta_{x_{i}}, \nu=\sum_{j} b_{j} \delta_{y_{j}}
$$

Solve the Linear Programming problem

$$
\min _{\pi} \sum_{i, j} \pi_{i j} d_{g}\left(x_{i}, y_{j}\right)^{2}
$$

with conservation of mass constraints

$$
\left\{\begin{array}{l}
\sum_{j} \pi_{i j}=a_{i} \\
\sum_{i} \pi_{i j}=b_{j}
\end{array}\right.
$$

To interpolate, for all i, j a mass $\pi_{i j}$ travels at constant speed on the geodesic between x_{i} and y_{j}.

From static to dynamic

$$
\mu=\sum_{i} a_{i} \delta_{x_{i}}, \nu=\sum_{j} b_{j} \delta_{y_{j}}
$$

Solve the Linear Programming problem

$$
\min _{\pi} \sum_{i, j} \pi_{i j} d_{g}\left(x_{i}, y_{j}\right)^{2}
$$

with conservation of mass constraints

$$
\left\{\begin{array}{l}
\sum_{j} \pi_{i j}=a_{i} \\
\sum_{i} \pi_{i j}=b_{j}
\end{array}\right.
$$

To interpolate, for all i, j a mass $\pi_{i j}$ travels at constant speed on the geodesic between x_{i} and y_{j}.

From static to dynamic

$$
\mu=\sum_{i} a_{i} \delta_{x_{i}}, \nu=\sum_{j} b_{j} \delta_{y_{j}}
$$

Solve the Linear Programming problem

$$
\min _{\pi} \sum_{i, j} \pi_{i j} d_{g}\left(x_{i}, y_{j}\right)^{2}
$$

with conservation of mass constraints

$$
\left\{\begin{array}{l}
\sum_{j} \pi_{i j}=a_{i} \\
\sum_{i} \pi_{i j}=b_{j}
\end{array}\right.
$$

To interpolate, for all i, j a mass $\pi_{i j}$ travels at constant speed on the geodesic between x_{i} and y_{j}.

From static to dynamic

$$
\mu=\sum_{i} a_{i} \delta_{x_{i}}, \nu=\sum_{j} b_{j} \delta_{y_{j}}
$$

Solve the Linear Programming problem

$$
\min _{\pi} \sum_{i, j} \pi_{i j} d_{g}\left(x_{i}, y_{j}\right)^{2}
$$

with conservation of mass constraints

$$
\left\{\begin{array}{l}
\sum_{j} \pi_{i j}=a_{i} \\
\sum_{i} \pi_{i j}=b_{j}
\end{array}\right.
$$

To interpolate, for all i, j a mass $\pi_{i j}$ travels at constant speed on the geodesic between x_{i} and y_{j}.

From static to dynamic

$$
\mu=\sum_{i} a_{i} \delta_{x_{i}}, \nu=\sum_{j} b_{j} \delta_{y_{j}}
$$

Solve the Linear Programming problem

$$
\min _{\pi} \sum_{i, j} \pi_{i j} d_{g}\left(x_{i}, y_{j}\right)^{2}
$$

with conservation of mass constraints

$$
\left\{\begin{array}{l}
\sum_{j} \pi_{i j}=a_{i} \\
\sum_{i} \pi_{i j}=b_{j}
\end{array}\right.
$$

To interpolate, for all i, j a mass $\pi_{i j}$ travels at constant speed on the geodesic between x_{i} and y_{j}.

Dynamical formulation of optimal transport

Definition

Let $\mu, \nu \in \mathcal{P}(X)$ be two probability measures on X. The dynamical optimal transport problem is

$$
\min _{\rho, \mathbf{v}} \int_{0}^{1} \int_{X}|\mathbf{v}(t, x)|^{2} \rho(t, x) \mathrm{d} t \mathrm{~d} x
$$

where the minimum is taken over densities $\rho:[0,1] \times X \rightarrow \mathbb{R}_{+}$and velocity fields $\mathbf{v}:[0,1] \times X \rightarrow T X$ such that

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \rho+\nabla \cdot(\rho \mathbf{v})=0 \\
\rho(0, \cdot)=\mu, \quad \rho(1, \cdot)=\nu
\end{array}\right.
$$

Dynamical formulation of optimal transport

Definition

Let $\mu, \nu \in \mathcal{P}(X)$ be two probability measures on X. The dynamical optimal transport problem is

$$
\min _{\rho, \mathbf{v}} \int_{0}^{1} \int_{X}|\mathbf{v}(t, x)|^{2} \rho(t, x) \mathrm{d} t \mathrm{~d} x
$$

where the minimum is taken over densities $\rho:[0,1] \times X \rightarrow \mathbb{R}_{+}$and velocity fields $\mathbf{v}:[0,1] \times X \rightarrow T X$ such that

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \rho+\nabla \cdot(\rho \mathbf{v})=0 \\
\rho(0, \cdot)=\mu, \quad \rho(1, \cdot)=\nu
\end{array}\right.
$$

The two problems are equivalent: the values are the same and one can construct minimizers from one formulation by the knowledge of minimizers of the other (Benamou and Brenier, 2000).

Convex formulation

Change of variables $\mathbf{m}=\rho \mathbf{v}$ the momentum the unknown.
Proper framework $\rho \in \mathcal{M}_{+}([0,1] \times X)$ and $\mathbf{m} \in \mathcal{M}([0,1] \times X, T X)$.

Convex formulation

Change of variables $\mathbf{m}=\rho \mathbf{v}$ the momentum the unknown.
Proper framework $\rho \in \mathcal{M}_{+}([0,1] \times X)$ and $\mathbf{m} \in \mathcal{M}([0,1] \times X, T X)$.

$$
\int_{0}^{1} \int_{x} \frac{1}{2}|\mathbf{v}(t, x)|^{2} \rho(t, x) \mathrm{d} t \mathrm{~d} x
$$

Convex formulation

Change of variables $\mathbf{m}=\rho \mathbf{v}$ the momentum the unknown.
Proper framework $\rho \in \mathcal{M}_{+}([0,1] \times X)$ and $\mathbf{m} \in \mathcal{M}([0,1] \times X, T X)$.

$$
\int_{0}^{1} \int_{x} \frac{1}{2}|\mathbf{v}(t, x)|^{2} \rho(t, x) \mathrm{d} t \mathrm{~d} x=\iint_{[0,1] \times x} \frac{|\mathbf{m}|^{2}}{2 \rho}
$$

Convex formulation

Change of variables $\mathbf{m}=\rho \mathbf{v}$ the momentum the unknown.
Proper framework $\rho \in \mathcal{M}_{+}([0,1] \times X)$ and $\mathbf{m} \in \mathcal{M}([0,1] \times X, T X)$.

$$
\begin{aligned}
& \int_{0}^{1} \int_{X} \frac{1}{2}|\mathbf{v}(t, x)|^{2} \rho(t, x) \mathrm{d} t \mathrm{~d} x=\iint_{[0,1] \times x} \frac{|\mathbf{m}|^{2}}{2 \rho} \\
&=\sup _{a, \mathbf{b} \text { continuous }}\left\{\langle a, \rho\rangle+\langle\mathbf{b}, \mathbf{m}\rangle: a+\frac{1}{2}|\mathbf{b}|^{2} \leqslant 0 \text { on }[0,1] \times x\right\}
\end{aligned}
$$

Convex formulation

Change of variables $\mathbf{m}=\rho \mathbf{v}$ the momentum the unknown.
Proper framework $\rho \in \mathcal{M}_{+}([0,1] \times X)$ and $\mathbf{m} \in \mathcal{M}([0,1] \times X, T X)$.

$$
\begin{aligned}
\int_{0}^{1} \int_{X} \frac{1}{2}|\mathbf{v}(t, x)|^{2} \rho(t, x) \mathrm{d} t \mathrm{~d} x & =\iint_{[0,1] \times x} \frac{|\mathbf{m}|^{2}}{2 \rho} \\
& =\sup _{a, \mathbf{b} \text { continuous }}\left\{\langle a, \rho\rangle+\langle\mathbf{b}, \mathbf{m}\rangle: a+\frac{1}{2}|\mathbf{b}|^{2} \leqslant 0 \text { on }[0,1] \times x\right\} .
\end{aligned}
$$

The continuity equation becomes linear and is understood in a weak sense.

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \rho+\nabla \cdot \mathbf{m}=0 \\
\rho(0, \cdot)=\mu, \quad \rho(1, \cdot)=\nu
\end{array}\right.
$$

Convex formulation

Change of variables $\mathbf{m}=\rho \mathbf{v}$ the momentum the unknown.
Proper framework $\rho \in \mathcal{M}_{+}([0,1] \times X)$ and $\mathbf{m} \in \mathcal{M}([0,1] \times X, T X)$.

$$
\begin{aligned}
\int_{0}^{1} \int_{X} \frac{1}{2}|\mathbf{v}(t, x)|^{2} \rho(t, x) \mathrm{d} t \mathrm{~d} x & =\iint_{[0,1] \times x} \frac{|\mathbf{m}|^{2}}{2 \rho} \\
& =\sup _{a, \mathbf{b} \text { continuous }}\left\{\langle a, \rho\rangle+\langle\mathbf{b}, \mathbf{m}\rangle: a+\frac{1}{2}|\mathbf{b}|^{2} \leqslant 0 \text { on }[0,1] \times x\right\} .
\end{aligned}
$$

The continuity equation becomes linear and is understood in a weak sense.

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \rho+\nabla \cdot \mathbf{m}=0 \\
\rho(0, \cdot)=\mu, \quad \rho(1, \cdot)=\nu
\end{array}\right.
$$

Remark

Existence comes from the direct method of calculus of variations. Uniqueness holds if μ or ν is absolutely continuous with respect to the volume measure.

About regularity

Take $\mu, \nu \in \mathcal{P}(X)$ and (ρ, \mathbf{m}) solution of the optimal transport problem.

Theorem (Smoothness: Caffarelli and others (1990 and later))

Assume X is the torus or a bounded domain of a Euclidean space with convex boundary.

If μ, ν are smooth and bounded from below by a strictly positive constant, then ρ and m are smooth.

About regularity

Take $\mu, \nu \in \mathcal{P}(X)$ and (ρ, \mathbf{m}) solution of the optimal transport problem.

Theorem (Smoothness: Caffarelli and others (1990 and later))

Assume X is the torus or a bounded domain of a Euclidean space with convex boundary.

If μ, ν are smooth and bounded from below by a strictly positive constant, then ρ and m are smooth.

On a generic Riemannian manifold, smoothness of the data does not imply smoothness of the interpolation (Ma-Trudinger-Wang, Loeper, Kim, etc.).

On the absence of lower bounds

Take $\mu, \nu \in \mathcal{P}(X)$ and (ρ, \mathbf{m}) solution of the optimal transport problem.

Counterexample (Santambrogio and Wang (2016))

Let X be a convex domain of the Euclidean space with smooth boundary. There exists μ, ν smooth and bounded from below by a strictly positive constant such that

$$
\min _{[0,1] \times X} \rho=0
$$

On the absence of lower bounds

Take $\mu, \nu \in \mathcal{P}(X)$ and (ρ, \mathbf{m}) solution of the optimal transport problem.

Counterexample (Santambrogio and Wang (2016))

Let X be a convex domain of the Euclidean space with smooth boundary. There exists μ, ν smooth and bounded from below by a strictly positive constant such that

$$
\min _{[0,1] \times X} \rho=0
$$

Counterexample

Let X be the 2-dimensional torus. For every $\varepsilon>0$, there exists μ, ν smooth and bounded from below by a strictly positive constant such that

$$
\min _{[0,1] \times x} \rho \leqslant \varepsilon\left(\min _{X} \mu, \min _{X} \nu\right) .
$$

2. Discretization on discrete surfaces (with S. Claici, E. Chien and J. Solomon) ${ }^{a}$

[^1]
Discrete surfaces

Discrete surfaces

Discrete surfaces

Discrete surfaces

Continuity equation: $\rho \in \mathbb{P}_{\text {time }}^{1} \mathbb{P}_{\text {space }}^{1}$ and $\mathbf{m} \in \mathbb{P}_{\text {time }}^{0} \mathbb{P}_{\text {space }}^{0}$.

Discrete surfaces

Continuity equation: $\rho \in \mathbb{P}_{\text {time }}^{1} \mathbb{P}_{\text {space }}^{1}$ and $\mathbf{m} \in \mathbb{P}_{\text {time }}^{0} \mathbb{P}_{\text {space }}^{0}$. Objective functional:

$$
\iint_{[0,1] \times X} \frac{|\mathbf{m}|^{2}}{2 \rho}
$$

Discrete surfaces

Continuity equation: $\rho \in \mathbb{P}_{\text {time }}^{1} \mathbb{P}_{\text {space }}^{1}$ and $\mathbf{m} \in \mathbb{P}_{\text {time }}^{0} \mathbb{P}_{\text {space }}^{0}$.
Objective functional: if \mathcal{G} is the space-time grid over which m is defined,

$$
\iint_{[0,1] \times x} \frac{|\mathbf{m}|^{2}}{2 \rho} \sim \frac{1}{2} \sum_{(t, x) \in \mathcal{G}} \frac{\left|\mathbf{m}_{t, x}\right|^{2}}{} \operatorname{vol}((t, x)) .
$$

Discrete surfaces

Continuity equation: $\rho \in \mathbb{P}_{\text {time }}^{1} \mathbb{P}_{\text {space }}^{1}$ and $\mathbf{m} \in \mathbb{P}_{\text {time }}^{0} \mathbb{P}_{\text {space }}^{0}$.
Objective functional: if \mathcal{G} is the space-time grid over which m is defined,

$$
\iint_{[0,1] \times x} \frac{|\mathbf{m}|^{2}}{2 \rho} \sim \frac{1}{2} \sum_{(t, x) \in \mathcal{G}} \frac{\left|\mathbf{m}_{t, x}\right|^{2}}{[\text { Average of } \rho \text { around }(t, x)]} \operatorname{vol}((t, x)) .
$$

Practical resolution

In the end: finite-dimensional convex constrained optimization problem.

Practical resolution

In the end: finite-dimensional convex constrained optimization problem.

- The dual is a Second Order Cone Program (SOCP).

Practical resolution

In the end: finite-dimensional convex constrained optimization problem.

- The dual is a Second Order Cone Program (SOCP).
- Size $\sim N \times M$ (N temporal grid, M number of vertices of the surface).

Practical resolution

In the end: finite-dimensional convex constrained optimization problem.

- The dual is a Second Order Cone Program (SOCP).
- Size $\sim N \times M$ (N temporal grid, M number of vertices of the surface).
- Solved with the Alternating Direction Method of Multipliers (ADMM) as Benamou and Brenier.

Practical resolution

In the end: finite-dimensional convex constrained optimization problem.

- The dual is a Second Order Cone Program (SOCP).
- Size $\sim N \times M$ (N temporal grid, M number of vertices of the surface).
- Solved with the Alternating Direction Method of Multipliers (ADMM) as Benamou and Brenier.

Alternatives: proximal splitting (Papadakis et al., 2014), Helmholtz-Hodge decomposition (Henry et al., 2019).

Examples

Positivity and mass preservation are automatically enforced

Examples

Positivity and mass preservation are automatically enforced

Not so perfect?

Not so perfect?

3. A general framework for convergence ${ }^{a}$

[^2]
A generic discretization

Original problem

Unknowns:

$$
\begin{aligned}
& \rho:[0,1] \times X \rightarrow \mathbb{R}_{+} \\
& \mathbf{m}:[0,1] \times X \rightarrow T X
\end{aligned}
$$

Objective

$$
\min _{\rho, \mathbf{m}}\left\{\iint_{[0,1] \times x} \frac{|\mathbf{m}|^{2}}{2 \rho}\right\}
$$

under the constraints

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot \mathbf{m}=0, \\
\rho(0, \cdot)=\mu, \rho(1, \cdot)=\nu
\end{array}\right.
$$

A generic discretization

Fully discretized problem

Original problem
Unknowns:

$$
\begin{aligned}
& \rho:[0,1] \times X \rightarrow \mathbb{R}_{+} \\
& \mathbf{m}:[0,1] \times X \rightarrow T X
\end{aligned}
$$

Objective

$$
\min _{\rho, \mathbf{m}}\left\{\iint_{[0,1] \times x} \frac{|\mathbf{m}|^{2}}{2 \rho}\right\}
$$

under the constraints

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot \mathbf{m}=0, \\
\rho(0, \cdot)=\mu, \rho(1, \cdot)=\nu
\end{array}\right.
$$

$\mathcal{X}_{\sigma}, \mathcal{Y}_{\sigma}$ vector spaces (stand for $\mathcal{M}(X), \mathcal{M}(T X)$),
$\operatorname{Div}_{\sigma}: \mathcal{Y}_{\sigma} \rightarrow \mathcal{X}_{\sigma}$ linear operator, $A_{\sigma}: \mathcal{X}_{\sigma} \times \mathcal{Y}_{\sigma} \rightarrow[0,+\infty]$ convex,
$(N+1)$ time steps, $\tau=1 / N$.

A generic discretization

Fully discretized problem

Original problem
Unknowns:

$$
\begin{aligned}
& \rho:[0,1] \times X \rightarrow \mathbb{R}_{+} \\
& \mathbf{m}:[0,1] \times X \rightarrow T X
\end{aligned}
$$

Objective

$$
\min _{\rho, \mathbf{m}}\left\{\iint_{[0,1] \times x} \frac{|\mathbf{m}|^{2}}{2 \rho}\right\}
$$

under the constraints

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot \mathbf{m}=0, \\
\rho(0, \cdot)=\mu, \rho(1, \cdot)=\nu
\end{array}\right.
$$

$\mathcal{X}_{\sigma}, \mathcal{Y}_{\sigma}$ vector spaces (stand for $\mathcal{M}(X), \mathcal{M}(T X)$),
$\operatorname{Div}_{\sigma}: \mathcal{Y}_{\sigma} \rightarrow \mathcal{X}_{\sigma}$ linear operator, $A_{\sigma}: \mathcal{X}_{\sigma} \times \mathcal{Y}_{\sigma} \rightarrow[0,+\infty]$ convex,
($N+1$) time steps, $\tau=1 / \mathrm{N}$.
Unknowns: $P \in\left(\mathcal{X}_{\sigma}\right)^{N+1}, \mathbf{M} \in\left(\mathcal{Y}_{\sigma}\right)^{N}$.
under the constraints

$$
\left\{\begin{array}{l}
\tau^{-1}\left(P_{k}-P_{k-1}\right)+\operatorname{Div}_{\sigma}\left(\mathbf{M}_{k}\right)=0 \\
P_{0}, P_{N} \text { given }
\end{array}\right.
$$

A generic discretization

Fully discretized problem

Original problem

Unknowns:

$$
\begin{aligned}
& \rho:[0,1] \times X \rightarrow \mathbb{R}_{+} \\
& \mathbf{m}:[0,1] \times X \rightarrow T X
\end{aligned}
$$

Objective

$$
\min _{\rho, \mathbf{m}}\left\{\iint_{[0,1] \times x} \frac{|\mathbf{m}|^{2}}{2 \rho}\right\}
$$

under the constraints

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot \mathbf{m}=0, \\
\rho(0, \cdot)=\mu, \rho(1, \cdot)=\nu
\end{array}\right.
$$

$\mathcal{X}_{\sigma}, \mathcal{Y}_{\sigma}$ vector spaces (stand for $\mathcal{M}(X), \mathcal{M}(T X)$),
$\operatorname{Div}_{\sigma}: \mathcal{Y}_{\sigma} \rightarrow \mathcal{X}_{\sigma}$ linear operator, $A_{\sigma}: \mathcal{X}_{\sigma} \times \mathcal{Y}_{\sigma} \rightarrow[0,+\infty]$ convex,
$(N+1)$ time steps, $\tau=1 / N$.
Unknowns: $P \in\left(\mathcal{X}_{\sigma}\right)^{N+1}, \mathbf{M} \in\left(\mathcal{Y}_{\sigma}\right)^{N}$.
Objective

$$
\min _{(P, \mathbf{M})}\left\{\sum_{k=1}^{N} \tau A_{\sigma}\left(\frac{P_{k-1}+P_{k}}{2}, \mathbf{M}_{k}\right)\right\}
$$

under the constraints

$$
\left\{\begin{array}{l}
\tau^{-1}\left(P_{k}-P_{k-1}\right)+\operatorname{Div}_{\sigma}\left(\mathbf{M}_{k}\right)=0 \\
P_{0}, P_{N} \text { given }
\end{array}\right.
$$

Previous works

Original problem

Previous works

Original problem

Semi discretized
(Maas et al.)
τ temporal step size

Previous works

Original problem

Previous works

(Erbar et al.)

Γ-convergence (Erbar et al.)

Semi discretized
(Maas et al.)

Original problem

r

I
,

Previous works

Original problem

Γ-convergence
for finite difference
under regularity
assumption
(Carrillo et al.)

Semi discretized
(Maas et al.)
τ temporal step size

Previous works

How does the theorem look like?

We assume that X is a smooth Riemannian manifold with a smooth and convex boundary.
"Reconstruction" operators $R_{\mathcal{X}_{\sigma}}^{A}, R_{\mathcal{X}_{\sigma}}^{\mathcal{E}}: \mathcal{X}_{\sigma} \rightarrow \mathcal{M}(X)$ and $R_{\mathcal{Y}_{\sigma}}: \mathcal{Y}_{\sigma} \rightarrow \mathcal{M}(T X)$.
"Sampling" operators $S_{\mathcal{X}_{\sigma}}: \mathcal{M}(X) \rightarrow \mathcal{X}_{\sigma}$ and $S_{\mathcal{Y}_{\sigma}}: \mathcal{D}\left(S_{\mathcal{Y}_{\sigma}}\right) \subset \mathcal{M}(T X) \rightarrow \mathcal{Y}_{\sigma}$.

How does the theorem look like?

We assume that X is a smooth Riemannian manifold with a smooth and convex boundary.
"Reconstruction" operators $R_{\mathcal{X}_{\sigma}}^{A}, R_{\mathcal{X}_{\sigma}}^{\mathcal{C E}}: \mathcal{X}_{\sigma} \rightarrow \mathcal{M}(X)$ and $R_{\mathcal{Y}_{\sigma}}: \mathcal{Y}_{\sigma} \rightarrow \mathcal{M}(T X)$.
"Sampling" operators $S_{\mathcal{X}_{\sigma}}: \mathcal{M}(X) \rightarrow \mathcal{X}_{\sigma}$ and $S_{\mathcal{Y}_{\sigma}}: \mathcal{D}\left(S_{\mathcal{Y}_{\sigma}}\right) \subset \mathcal{M}(T X) \rightarrow \mathcal{Y}_{\sigma}$.

Rough formulation

Under compatibility conditions between reconstruction, sampling, A_{σ} and $\operatorname{Div}_{\sigma}$, the solutions of the fully discretized problem, properly reconstructed, converge weakly in space and time to a solution of the original problem, when the spatial and temporal grids are refined.

Applications

Triangulations of surfaces

Applications

Triangulations of surfaces

$\rho: \bullet, \mathbf{m}: \square$

Applications

Triangulations of surfaces

$\rho: \bullet, \mathbf{m}: \square$
Works if:

- Regular meshes.

Applications

Triangulations of surfaces

$\rho: \bullet, \mathbf{m}: \square$
Works if:

- Regular meshes.
- C^{1} convergence to a surface.

Applications

Triangulations of surfaces

$\rho: \bullet, \mathbf{m}: \square$
Works if:

- Regular meshes.
- C^{1} convergence to a surface.

Finite volumes (Gladbach et al., 2018)

Applications

Triangulations of surfaces

$\rho: \bullet, \mathbf{m}: \square$
Works if:

- Regular meshes.
- C^{1} convergence to a surface.

Applications

Triangulations of surfaces

$\rho: \bullet, \mathbf{m}: \square$
Works if:

- Regular meshes.
- C^{1} convergence to a surface.

Finite volumes (Gladbach et al., 2018)

$\rho: \bullet, \mathbf{m}: \square$
Works if:

- Admissible, uniformly regular meshes.
- Isotropy condition.

Passing to the limit: reconstruction

To go from the discretized problems to the original one, we need to pass to the limit:

Passing to the limit: reconstruction

To go from the discretized problems to the original one, we need to pass to the limit:

- the continuity equation in its weak form,

Passing to the limit: reconstruction

To go from the discretized problems to the original one, we need to pass to the limit:

- the continuity equation in its weak form,
- the objective functional which is lower semi-continuous.

Passing to the limit: sampling

Hard to sample because of the discontinuity of the cost: we need to regularize first.

Passing to the limit: sampling

Hard to sample because of the discontinuity of the cost: we need to regularize first.

Passing to the limit: sampling

Hard to sample because of the discontinuity of the cost: we need to regularize first.

Passing to the limit: sampling

Hard to sample because of the discontinuity of the cost: we need to regularize first.

Passing to the limit: sampling

Hard to sample because of the discontinuity of the cost: we need to regularize first.

Passing to the limit: sampling

Hard to sample because of the discontinuity of the cost: we need to regularize first.

Then sampling the regular part: only consistency is required.

Passing to the limit: controllability

Joining two Dirac masses in one time step with a cost bounded by $d_{g}(x, y)^{2}$?
δ_{x}
δ_{y}

Passing to the limit: controllability

Joining two Dirac masses in one time step with a cost bounded by $d_{g}(x, y)^{2}$?

Extensions

Having a final value not given but penalized (one step of the JKO scheme): easy adaptation.

Extensions

Having a final value not given but penalized (one step of the JKO scheme): easy adaptation.

Adding a running cost depending on the density (variational Mean Field Games): more involved because of controllability.

Extensions

Having a final value not given but penalized (one step of the JKO scheme): easy adaptation.

Adding a running cost depending on the density (variational Mean Field Games): more involved because of controllability.

Other cost functions: need for a better understanding of the regularization of the continuity equation.

Extensions

Having a final value not given but penalized (one step of the JKO scheme): easy adaptation.

Adding a running cost depending on the density (variational Mean Field Games): more involved because of controllability.

Other cost functions: need for a better understanding of the regularization of the continuity equation.

The end

[^0]: ${ }^{1}$ H. Lavenant, S. Claici, E. Chien and J. Solomon, Dynamical Optimal Transport on Discrete Surfaces. Arxiv 1809.07083.
 ${ }^{2}$ H. Lavenant, Unconditional convergence for discretizations of dynamical optimal transport. Arxiv 1909.08790.

[^1]: ${ }^{a}$ H. Lavenant, S. Claici, E. Chien and J. Solomon, Dynamical Optimal Transport on Discrete Surfaces. Arxiv 1809.07083.

[^2]: ${ }^{a}$ H. Lavenant, Unconditional convergence for discretizations of dynamical optimal transport. Arxiv 1909.08790.

