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Abstract

The numerical resolution of hyperbolic systems with Fourier Continuaton or high order finite
difference methods on uniform grids and with explicit time marching leads to instabilities due to
the enforcement of boundary conditions. In this report, we give a theoretical understanding of these
instabilities and present a local filtering method that enables us to recover stability on general multi-
dimensional domains with a minimal loss of accuracy.
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1 Introduction

The goal of this study was to understand and to remove numerical instabilities that arise when solving
numerically hyperbolic systems with explicit time marching and Fourier Continuation (that we will
denote by FC and present in section 2) to compute spatial derivatives.

These instabilities arise with many different hyperbolic PDEs (the typical examples are the ones
in electromagnetic), but we will concentrate on the most simple hyperbolic system: the wave system
in d dimensions which can be written as
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Figure 1: Numerical (solid line) and exact (dashed line) solution of the equation (1) in 1D (only u is
plotted) at time t = 2.111 with explicit multi-step time marching and FC.


ut = ∇.v in Ω

vt = ∇u in Ω

u = 0 on ∂Ω

, (1)

where Ω is a bounded domain in Rd with a smooth boundary ∂Ω, u, defined over R+ ×Ω is a scalar
function and v : R+ × Ω→ Rd is a vector field.

Given any smooth initial condition (u0,v0) such that u0 vanishes on ∂Ω, there exists a unique
solution to (1). Moreover, u satisfies the wave equation

utt = ∆u, (2)

an both u and v are uniformly bounded over time in L2(Ω).

One can easily try to solve (1) numerically using explicit time marching method and FC (or high
order1 finite difference formula) to compute the spatial derivatives, but it leads to an unstable scheme.
Growing oscillations arise in the numerical solution (see figure 1) and prevent one to solve (1) with
high order accuracy. That’s why one wants a way understand these instabilities, and remove them
while keeping the high order accuracy and the excellent dispersion relation provided by FC.

We restricted our self to explicit time marching method (in order to avoid the costly inversion of
a linear system), and more precisely the Adam Bashforth of order four (AB4). As far as the spatial
discretization is concerned, the only constraint was to use a uniform grid, in order to avoid a too strict
CFL condition.

This report is organized as follows : we present briefly the FC method, then introduce the spectral
analysis in the 1D case that gives an understanding of the instabilities. This is followed by the
technique we developed to fix the problem: the application of a finite difference filter that is localized
only near the boundaries.

1of order greater or equal to four.
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2 The Fourier Continuation method

2.1 General Principle

If one has a smooth periodic function (or more precisely the sampled values of a smooth periodic
function), the Discrete Fourier Transform (DFT) can be used to compute quickly the derivatives of
the function with spectral accuracy and no dispersion. However, this method fails if the function is
not periodic: the Gibbs phenomenon occurs near the boundaries, damaging severely the accuracy. To
recover the high order accuracy when working with a non periodic function, one can extend it on a
larger interval in such a way that the extended function is smooth and periodic, and then use all the
tools available for periodic functions. The article [1] gives a description of the many ways to extend
a non periodic function, with the theoretical and numerical questions raised by this problem.

2.2 The Gram Fourier Continuation

We will present briefly the Fourier Continuation (FC) developed by O. Bruno, a complete description
can be found in [3, 5]. Let us assume that we have a smooth non periodic function f , defined on [0, 1]

(given by its values (Fj)1≤j≤m =
(
f
(
j−1
m−1

))
1≤j≤m

on a equidistant grid), that we want to extend

on a larger interval [0, a], with a > 1. The extension is computed by using only the values at n∆

points near the boundaries (meaning (Fj)1≤j≤n∆ and (Fj)m−n∆+1≤j≤m). An accurate extension of the
two polynomials (one for each boundary) that interpolate f at these n∆ points near the boundaries is
computed thanks to the SPIC-FU described in [1, section 4.1]. We take this extension as the extension
of the original function (see figure 2).

As the interpolation is n∆ order accurate and the SPIC-FU extension is spectrally accurate, the
global extension is of order n∆ (meaning that the extended function will be n∆ times differentiable
as long as this is also the case for the original function). Moreover, one can precompute and store the
extensions of all the polynomials of degree less than n∆ − 1 (by linearity, only n∆ extensions need to
be computed2) so that the whole extension process will have a constant cost (independent of m the
total number of points in the original interval)

Using these ideas, the algorithm to compute the derivative of a given function can be described as
follows :

1. Compute the two polynomials that interpolate f near the boundaries.

2. Use the precomputed extension of these polynomials to get the function in the extended

region [1, a].

3. Compute the derivative of the whole periodic function (defined on [0, a]) using the

FFT.

4. Restrict the derivative of the extended function to the original interval [0, 1].

The whole process gives an approximation of order n∆ and the number of operations needed is
O(m logm) (the bottle neck is the computation of the FFT, all other computations have a constant
or linear cost), where m is the number of discretization points. Moreover, this method has very few
dispersion compared to high order finite difference formula.

In practice, if n∆ is too large, the Runge phenomenon can occur when interpolating the function
leading to instabilities, so we used only n∆ = 5. Moreover, the parameter a was chosen in such a way
there were exactly 25 points in the continuation region, keeping the step size equal to the one in the
original interval [0, 1].

2The extensions are computed only for the polynomials of the Gram basis.

3



0 0.5 1
0

1

2

3

4

5

6

7

x

In
iti

al
 fu

nc
tio

n

(a)

1 1.1 1.2 1.3
0

0.5

1

1.5

2

x
C

on
tin

ua
tio

n 
in

 th
e 

ex
te

nd
ed

 in
te

rv
al

(b)

0 0.5 1 1.5 2
0

1

2

3

4

5

6

x

E
xt

en
de

d 
fu

nc
tio

n

(c)

Figure 2: (a) Initial smooth non periodic function (b) Continuation of the function in the extended interval
(dashed line) using only n∆ near boundaries values (represented by circles) (c) the continued function is
periodic, the extension being in dashed line.

3 Instabilities in the 1D case

3.1 Equation and discretization

Taking d = 1 in (1), we come up with the following PDE system:
ut = vx

vt = ux

u(t, 0) = u(t, 1) = 0 ∀t ≥ 0

, (3)

where (t, x) ∈ R× [0, 1] and u, v are scalar function. In this case, both u and v will satisfy the wave
equation :

utt = uxx and vtt = vxx. (4)

Let us give some notations about the way we discretize (4): the spatial discretization is done on
a uniform grid, the total number of points in the grid will be denoted by m, and the discretization
points will be the xj = j−1

m−1 for 1 ≤ j ≤ m. If w is a function defined over [0, 1], then we will

note W = (w(xj))1≤j≤m ∈ Rm the vector containing the sampled values of w3. D1 will denote an
approximation of the first differentiation operator: it is a linear operator acting on Rm such that
D1W is an approximation of w′.

The time is sampled with a constant time step dt, so we will denote ndt ≡ tn, and superscript
indices will correspond to time: the quantity Unj will be an approximation of u(xj , t

n). The coefficients
of the AB4 scheme will be denoted by a0, a1, a2 and a3. Eventually, the discrete operator enforcing
the boundary conditions will be denoted by B : B(U1, U2, . . . Um) = (0, U2, . . . , Um−1, 0). A fully
discretized version of (3) can therefore be written as

3More generally, lower case letters stand for functions and upper case letters for vectors containing sampled values of
functions.
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{
Un+1 = B

(
Un + dtD1

(
a0V

n + a1V
n−1 + a2V

n−2 + ab3V
n−3
))

V n+1 = V n + dtD1

(
a0U

n + a1U
n−1 + a2U

n−2 + a3U
n−3
) . (5)

3.2 Stability analysis

As long as the operator D1 is consistent, the overall scheme will be consistent. Therefore to prove
the convergence the stability is a sufficient and necessary condition. We recall that the scheme is
stable if and only if, for every initial condition, the sequences (Un)n≥0 and (V n)n≥0 are bounded. A
simple analysis is to write (5) as a linear first order recurrence relation on R8m, and then to study the
spectrum of the 8m× 8m matrix associated to this recurrence relation. However, following a discrete
analogue of the derivation of the scalar wave equation (4) from the system (3), and using the fact that
B2 = B, we can show that (Un)n≥0 satisfies an eight order recurrence relation:

Un+1 + Un−1 − 2Un

dt2
= BD2

1

(
a2

0U
n−1 + 2a0a1U

n−2 + (a2
1 + 2a0a2)Un−3 + (2a0a3 + 2a1a2)Un−4

+ (2a1a3 + a2
2)Un−5 + 2a2a3U

n−6 + a2
3U

n−7
)
. (6)

The left hand side of (6) is an approximation of utt and the right hand side of uxx. To solve this
equation, we project it on the eigenvectors of BD2

1, so we are left with m dis coupled scalar eight
order linear recurrence relations. And a sufficient condition for a scalar eight order linear recurrence
relation to be stable is that all the roots of the characteristic polynomial are of modulus less than 1.

Therefore the first step is to compute the eigenvalues of BD2
1, and then, for every eigenvalue λ,

we have to check whether the roots of the polynomial

X8 +X6 − 2X7 = dt2λ
(
a2

0X
6 + 2a0a1X

5 + (a2
1 + 2a0a2)X4 + (2a0a3 + 2a1a2)X3

+ (2a1a3 + a2
2)X2 + 2a2a3X + a2

3

)
(7)

are of modulus less than one. The set of all z = dt2λ such that the latter property holds is called the
stability region of the scheme. The stability regions of both the AB4 and AB3 method are plotted in
figure 3. We can see that they are very closed to the real negative axis, which is the stability region
of the wave scalar equation (4):

utt = zu. (8)

Indeed, one can check that the solutions of (8) are bounded if and only if z is real and negative.
The tininess of the stability region explains why discrete hyperbolic systems are likely to be unstable.
Indeed, in the continuous case, the fact that the eigenvalues of the laplacian are real and negative
comes from the fact that this operator is self-adjoint and negative. But for a discrete operator, even
if the eigenvalues are close to the one of the laplacian, it does not mean that they lie in the stability
region. Moreover, it tells us that the choice of the time marching method (as long as it is explicit)
does not affect stability: in any case the stability region will be close to the stability region of (8),
and an eigenvalue outside of the stability region for one method also lies outside for another.

The equation (6) also reveals the difference between solving the system (3) and the scalar equation
(4). In the second case, we can directly use an approximation of the second derivative operator D2
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Figure 3: Difference between the biggest modulus of the roots of the characteristic polynomial and 1 for
AB3 and AB4. (when this difference is negative it is in black). Watch out the different scales on the real
and imaginary axis.

(either with FC or finite difference), whereas in the first case, the second derivative is approximated
by the discrete square of the discrete differentiation operator D1.

Figures 4 and 5 show the spectrum of BD2
1 and BD2 (the one that matters if we solve (4) nu-

merically). The difference is striking, we can clearly see in figure 4 two eigenvalues that are outside
of the stability region, eigenvalues that we do not see in the spectrum associated to the scalar wave
equation.

Moreover, we can plot (figure 6) the unstable modes of the equation (5), more precisely the
eigenvectors associated to the eigenvalues that lie outside the stability region. At each time step, the
component of these modes will be multiplied by a factor of modulus strictly greater than one, factor
that we can compute by looking at the roots of (7).

To check these results, we present in figure 7 the error (expressed in the infinity norm) committed
when solving the wave equation with FC, the initial condition being u(x, 0) = sin(πx) and v(x, 0) = 0
(an analytic solution is known for this initial condition). Before t = 1, the component on the unstable
modes is smaller than truncation error so it cannot be seen, but then we clearly see an exponential
growth of the error which is due to the exponential growth of the component on the unstable modes.
The ”experimental” exponential rate can be computed in figure 7 and it matches the ”theoretical”
value computed thanks to the equation (7) and the spectrum of BD2

1 (figure 4).

3.3 Singular value decomposition of D1

Basically, to enforce stability, we have to modify either B or D1 in such a way that the spectrum of
BD2

1 have only real and negative eigenvalues. The problem is that the way the spectrum is modified
when we change D1 is not obvious.

However, it seems to have a link with the Singular Value Decomposition (SVD) of D1. Indeed,
figure 8 presents the SVD of D1, the presence of two large (compare to the other ones) singular values
is striking. Moreover, figure 9 which presents one of the singular vector associated to these two large
singular values is very similar to the one of figure 6.

We removed these two large singular values (by changing the diagonal matrix in the SVD), it
gave us a matrix D̂1 that happened to produce a stable scheme when we replaced D1 by D̂1 in the

6
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Figure 4: Spectrum of the matrix dt2BD2
1 with

dt = 10−3, and D1 the FC differentiation oper-
ator with m = 100 points.
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Figure 5: Spectrum of the matrix dt2BD2 with
dt = 10−3, and D2 the FC second differentiation
operator with m = 100 points.
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Figure 6: Eigenvector for one of the two complex eigenvalues of the figure 4. Only the real part is plotted.
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Figure 7: Error (in infinity norm) versus time for the 1D wave equation system, with FC, m = 100 points
in space, and dt = 10−3, AB4. The initial condition is u(x, 0) = sin(πx) and v(x, 0) = 0.

recurrence relation (5): figure 10 shows the spectrum of BD̂1, all the eigenvalues lie in the stability
region. However, to remove these large singular values damages the accuracy, the scheme is no longer
consistent. Nevertheless it tells us that these large singular values may have a link with the complex
eigenvalues.

The interpretation that we give is that these large singular values shows that the FC differentiation
operator amplifies errors much more near the boundaries than in the center. Therefore the little
discontinuities introduced when enforcing the boundary conditions are strongly amplified over time,
leading to the huge oscillations.

3.4 Importance of the enforcement of the boundary conditions

To ”prove” that the instabilities are coming from the enforcement of the boundary conditions, we
cheated when enforcing them. In the particular case when we had an analytic expression of the exact
solution (for a standing wave for example), we enforced the boundary conditions by assigning the
exact value u(xj , t

n) to Unj not only for j = 1 and m (because in this case u(xj , t
n) = 0) but for j ≤ p

and j ≥ m−p+1 for a given p ≥ 1 (so the case p = 1 being the ”classic” enforcement of the boundary
conditions.

This way to cheat by using the exact solution in a small neighborhood of the boundaries was a way
to ”remove” the boundaries. And indeed, if p ≥ 2, the scheme is stable : the instabilities are really
coming from the discontinuity introduced when enforcing the boundary conditions and amplified by
the inaccuracy of FC near the boundaries.

4 The finite difference local filter

We present a method that enables to fix the stability issue with a minimal loss of accuracy. This
method is based on a filtering process, meaning that at each iteration, we apply a filter to the solution
that smooths it and removes the high oscillatory modes. This filter is applied in such a way that it
affects only the region near the boundary, so that the accuracy and the excellent dispersion relation
of the FC differentiation operator are fully preserved in the middle of the domain Ω.

We first present the reasons that led us to abandon the FC filter that was used before and to switch
to a finite difference filter, and then present how we apply it locally. Eventually, we present another
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largest singular value of the FC differentiation
operator, m = 100 points.
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Figure 11: ffilter for α = 40, p = 4 and kmax = 100.

condition that was necessary to enforce stability in dimension d = 2, mainly the basis in which to
express v. Numerical experiments in one and two dimensions are shown, the generalization to d = 3
being straightforward.

4.1 The problem of the FC filter

One very efficient way to filter a periodic function is to decompose the function as a Fourier series,
and then to multiply the Fourier coefficients by a filter function that is nearly equal to 1 for the small
wave numbers and very small for the large wave numbers. The filter function used was of the form

ffilter(k) = exp

(
−α

(
k

kmax

)2p
)
, (9)

where kmax is the maximal wave number (equal to the half of the number of discretization point) and
α, p are two free parameters to adjust the width and the sharpness of the window (typical values were
α = 40 and p = 4, see figure 11). For a smooth function, the coefficients on the large wave numbers
are very small, so that the filtered function is very close to the original one. One can even prove that
if p is large enough, the order of numerical scheme can be preserved even if the function is filtered at
every time step.

Following this, to filter a non periodic function, one can extend this function using FC, filter with
the above method the extended periodic function and then restrict the filtered function to the physical
interval. However, it happens that this method suffers from a great problem: the continuation process
is ill conditioned, so the continuation of a very oscillatory function will be very large (in infinity norm),
and when filtered, the huge peaks in the continuation region will spread out in the physical interval,
making things worst near the boundaries for the filtered function rather than the unfiltered one (see
figure 12). Numerically, with a very strong filter (meaning α large and p small) the scheme was more
unstable compared to no filter at all.

That’s why we abandoned this filtering method and we switched to a finite difference one to deal
with non periodic functions.
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Figure 12: (a) Function with high oscillatory modes (b) Its continuation, where we notice a huge peak in
the continuation region (c) the FC-filtered function, where oscillations have been eliminated everywhere
except near the boundaries because of the peak in the extension region.

4.2 The finite difference filter

4.2.1 The 1D case

The finite difference filter presented in this section comes from [4]. Basically, the value of the filtered
function at one point will be a local weighted average of the values of the function in the neighborhood
of this point. Two parameters can be chosen : the first one is the order 2p of the filter (the filtered
function converges to the original one at the order 2p as we increase the number of discretization
points), that adjusts the number of points used in the average of the function, and a parameter αf on
which will depend the weights of the average. The bigger this parameter is, the weaker the filter is (see
[4] for more details). We only write here the way the filtered function is computed: if U = (Ui)1≤i≤m
is the unfiltered function, then the filtered function W = (Wi)1≤i≤m satisfies

αfWi−1 +Wi + αfWi+1 =

p∑
j=0

1

2
(ajUi+j + Ui−j) for p+ 1 ≤ i ≤ m− p, (10a)

αfWi−1 +Wi + αfWi+1 =

2p+1∑
j=1

bi,jUj for 2 ≤ i ≤ p, (10b)

αfWi−1 +Wi + αfWi+1 =

2p+1∑
j=1

bi,jUm−j+1 for m− p+ 1 ≤ i ≤ m− 1, (10c)

W1 = U1, (10d)

Wm = Um, (10e)

where the coefficients ai and bi,j depend on αf and are chosen in such a way that the method is of
order 2p. The equation (10a) holds in the middle of the interval, whereas equations (10b) and (10c)
deal with the left and right boundaries respectively.

We can notice that the computation of W requires to solve a tridiagonal linear system, that can
be done in O(m) operations. We also note that the boundary values are left unchanged by the filter,
that means that W will satisfy the same boundary conditions as U .
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Figure 13: (a) Function with high oscillatory modes (b) the FD filtered function (c) the local FD filtered
function (solid line) and the windowing function χ (dashed line), we can see that in this case the effects
are located near the boundaries. Parameters of the filter are p = 2 and αf = −0.3.

4.2.2 The 2D case

In 2D we will assume that U is a 2D array (Ui,j)1≤i≤m1, 1≤j≤m2 ∈ Rm2
= Rm ⊗Rm. If we denote by

F 1 the 1D finite difference filter, than the we can define the filter along the first and second direction
F 2

1 and F 2
2 by

∀1 ≤ j ≤ m2, ((F 2
1U)i,j)1≤i≤m1 = F 1(Ui,j)1≤i≤m1 , (11)

and

∀1 ≤ i ≤ m1, ((F 2
2U)i,j)1≤j≤m2 = F 1(Ui,j)1≤j≤m2 . (12)

To apply the 2D filter F2 is to filter in both directions:

F 2 = F 2
1 ◦ F 2

2 = F 2
2 ◦ F 2

1 , (13)

it simply means that the 2D filter is the tensor product of the two 1D filters : F 2 = F 1 ⊗ F 1.

4.3 Making the filter local

As the instabilities appear near the boundaries, we filter the function only there, in order to avoid to
damage the accuracy of the numerical solution in the interior. More precisely, we can write the linear
operator F corresponding at the filtering process as as F = I+ F̂ . Then, after enforcing the boundary
condition, we filter the numerical solution by assigning the following value to U :

U ← U + χF̂U, (14)

where χ is a smooth function, null in the interior and equal to 1 near the boundaries. Therefore,
near the boundaries the filtered function FU is assigned to U , and the latter is left unchanged in the
interior. The figure 13 compares the effect of the local and ”classic” finite difference filter.

Then if we call Fχ the local finite difference filter, the whole scheme solving the wave system (1)
can be written, for each time step as:

12
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Figure 14: Error in infinity norm in space and time (0 ≤ t ≤ 1) for (3) solved with AB4, FC and local
(solid line) and global (dashed line) FD filtering in function of the number of discretization points. We
used the manufactured solution u(t, x) = sin(2πx) cos(2πt) and v(t, x) = cos(2πx) sin(2πt).

1. Compute Un+1 and Vn+1 using AB4 and the FC differentiation operator.

2. Apply the boundary conditions to Un+1 by setting the value at the boundary points

to 0.

3. Assign to Un+1 the value FχU
n+1.

Indeed, numerical experiments showed that it is enough to filter only u and not v to enforce
stability.

4.4 Results in 1D

To check for stability, the same kind of analysis as the one performed in 3.2 is not possible, (basically
because the filtering operator is not a projection). That’s why we checked the stability only numeri-
cally: we ran a simulation with random initial condition (in order to trigger all modes) on a long time
(of the order of 107 time steps), and we checked if the numerical solution remain bounded. If yes, it
does not necessarily mean that the scheme is rigorously stable, but it shows that instabilities will not
be observed for every practical case.

With the filter of order 6, αf = 0.3, and a window of width 5 points, the numerical experiments
showed that the scheme is stable. Moreover, to check for accuracy, we used a manufactured solution
(a stationary wave), the convergence plot is presented in figure 14, exhibiting a 5th order convergence
(the bottle neck being the order of the FC differentiation operator).

To show the advantage of the local FD filter compared to the global one, we ran the following
experiment: we solved the wave system (3) starting with a very oscillatory wave presented in figure
15. We waited then one period during which the wave bounces against the boundaries and goes
back to its initial value. We then computed the error (in infinity norm) between the initial condition
and the numerical solution after one period, and we plotted the results in function of the number of
discretization points, this is figure 16. The plateau at the beginning is due to the fact that with not

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u

Initial condition

Figure 15: Initial condition u (very oscillatory
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Figure 16: Error in infinity norm after one pe-
riod with the initial condition given in figure
15 in function of the number of points for lo-
cal (solid line) and global (dashed line) finite
difference filter.

enough points, the filter will ”kill” the oscillations in the initial solution. We can see with this figure
that the local filter needs much less points to represent accurately a very oscillatory wave.

4.5 Results in 2D

In two dimensions, we assume that the domain Ω is parametrized by a square Γ which will either be
[0, 1]2 or R/Z× [0, 1] (in the second case we use periodic boundary conditions for the first variable).
More precisely we assume to have a diffeomorphism

φ : Γ → Ω
(ξ, η) 7→ (x(ξ, η), y(ξ, η))

(15)

which is numerically given by the values (xi,j , yi,j) of φ on a uniform discretization of Γ : with
ξi = i−1

mξ−1 for 1 ≤ i ≤ mξ and ηj = j−1
mη−1 for 1 ≤ j ≤ mη, then (xi,j , yi,j) = φ(ξi, ηj). Then instead

of solving the wave system (1), we take ũ = u ◦ φ and ṽ = v ◦ φ (defined over Γ) as unknown. These
latter functions satisfy a system where the coefficients of the differential of φ−1 occur. But as we have
the relation

d(φ−1) = (dφ)−1, (16)

and that we can compute numerically the right hand side of (16), we end up with a way of computing
without an analytic expression of φ the coefficients of the equation satisfied by ũ and ṽ, and therefore
solve (1) with only the knowledge of the grid points (xi,j , yi,j).

Let us now emphasize something that is crucial to get stability even though we don’t really under-
stand why until now: the choice of the basis on which to express v. Indeed, in dimension 2 and more,
v is a vector field and therefore we must choose a basis and take as unknowns the coordinates of v in
this basis. Even though this choice doesn’t matter for the consistency of the scheme, it is important as
far as stability is concerned: it happens that the choice of two fix and orthogonal directions (meaning
to work in Cartesian coordinates) to project v onto leads to an unstable scheme, even with a (global)
filter.
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Figure 17: Points of the grid (xi,j, yi,j) with the local basis (uξ,uη).

That’s why we chose to work in the local basis (uξ,uη), whose vectors are unitary and aligned with
∂ξφ and ∂ηφ, where ∂ξ and ∂η are respectively the differentiation w.r.t the first and second coordinates
(see figure 17 for a graphic representation). The advantage of this local basis is that the expressions
of the gradient and the divergence (given in annex A) lead directly to an hyperbolic system. As it is
written above, we have seen numerically that to work in this local basis instead of the Cartesian one
is necessary to enforce stability, but we don’t have a theoretical understanding of this fact.

For the numerical experiments, and to avoid any instabilities related to the presence of corners
in Ω, we take a domain (see figure 18 for examples) that can be parametrized by R/Z × [0, 1]: one
direction is periodic, so that all the boundaries locally look like the 1D boundary. In the periodic
direction, we used the Fourier differentiation operator to get spectral accuracy.

To sum up, we do the following modifications compared to the naive discretization (5):

• filter U with the local finite difference filter,

• express the coordinates of v in the local basis,

• and take a domain periodic in one direction.

We got numerical stability (up to 107 time steps) for various domains like those of figure 18. Depending
on the stiffness from the grid, we sometimes had to change the parameters of the filter.

Moreover, using a manufactured solution, we were able to check that this scheme is fifth order, see
figure 19 for the convergence plot.

4.6 Multi-domain in 2D

Avoid corners is mainly justified by the use of a multi-domain code. Indeed, in order to use parallel
computing, the domain is usually decomposed in different sub-domains with overlapping. Therefore
the corners are in the overlapping regions and do not correspond to real boundaries.

15



Figure 18: Two examples of domain diffeomorphic to R/Z× [0, 1] with their discretization.
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Figure 19: Error in infinity norm in space and time (0 ≤ t ≤ 1) for (3) solved with AB4, FC and local
(solid line) or global (dashed line) FD filtering in function of the number of the discretization points (we
took mξ = mη +20, where mη is the number of points indicated on the plot). The domain Ω is an annulus.
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Numerical experiments to gets stability with the multi-domain codes are still being performed,
stability issues related to the way the solutions in different sub-domains are matched still occur.

4.7 Finite difference differentiation operator

We also used this local filtering method to stabilize the hyperbolic system solver with AB4 and
a compact finite difference differentiation operator of order four (which lead to instabilities if no
treatment is done).

The same stability results were obtained for 1D and 2D, and the order of convergence is four as
the finite difference scheme is the bottle neck. Considering this, we strongly believe that the local
filtering method can handle various high order differentiation operators.

5 Conclusions and further work

The theoretical study allows us to know precisely which modes of the equations are causing instabilities,
and that the best way to fix the problem is either to change the differential operator or to filter.

Many attempts were done, and eventually the finite difference filtering method, although we do
not have a really good theoretical understanding of it, seems to fix efficiently the oscillations, whereas
the FC filter used previously did not. To make the filter local helps to keep a reasonable number of
points per wavelength to represent accurately a function.

Work is left to be done, in particular to adapt this method for multi-mesh codes.

A Gradient and divergence in the local basis

We will denote by φ = (x, y) a diffeomorphism, going from Γ to Ω where Γ and Ω are two open and
bounded domain of R2. We will denote by ∂ξ and ∂η the differentiation w.r.t the first and second
coordinates respectively. We will define the local basis (uξ,uη) in each point by

uξ =
1

nξ

(
∂ξx
∂ξy

)
and uη =

1

nη

(
∂ηx
∂ηy

)
, (17)

where nξ =
√

(∂ξx)2 + (∂ξy)2 and nη =
√

(∂ηx)2 + (∂ηy)2. We will also denote by J the jacobian of
the map φ :

J = ∂ξx∂ηy − ∂ηx∂ξy. (18)

A.1 Gradient

If we have a function f : Ω → R, its gradient g = ∇f is a vector field. We are interested in the
expression of the coordinates (g̃ξ, g̃η) of g ◦ φ in the basis (uξ,uη). By denoting f̃ = f ◦ φ, we have :(

g̃ξ
g̃η

)
=
nξnη
J 2

(
1 −〈uξ,uη〉

−〈uξ,uη〉 1

)(
nη∂ξ f̃

nξ∂ηf̃

)
. (19)

A.2 Divergence

Now if we have a vector field g̃ : Γ → R2, whose coordinates (g̃ξ, g̃η) are given in the local basis
(uξ,uη), we would like to express the divergence of g = g̃ ◦ φ−1. We have :
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(∇.g) ◦ φ =
1

J

(
∂ξ

(
J
nξ
g̃ξ

)
+ ∂η

(
J
nη
g̃η

))
. (20)
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